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Abstract
Background Individuals with diabetic kidney disease (DKD) often suffer cardiac and kidney events. We sought to 
develop an accurate means by which to stratify risk in DKD.

Methods Clinical variables and biomarkers were evaluated for their ability to predict the adjudicated primary 
composite endpoint of CREDENCE (Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical 
Evaluation) by 3 years. Using machine learning techniques, a parsimonious risk algorithm was developed.

Results The final model included age, body-mass index, systolic blood pressure, and concentrations of N-terminal 
pro-B type natriuretic peptide, high sensitivity cardiac troponin T, insulin-like growth factor binding protein-7 and 
growth differentiation factor-15. The model had an in-sample C-statistic of 0.80 (95% CI = 0.77–0.83; P < 0.001). 
Dividing results into low, medium and high risk categories, for each increase in level the hazard ratio increased by 3.43 
(95% CI = 2.72–4.32; P < 0.001). Low risk scores had negative predictive value of 94%, while high risk scores had positive 
predictive value of 58%. Higher values were associated with shorter time to event (log rank P < 0.001). Rising values 
at 1 year predicted higher risk for subsequent DKD events. Canagliflozin treatment reduced score results by 1 year 
with consistent event reduction across risk levels. Accuracy of the risk model was validated in separate cohorts from 
CREDENCE and the generally lower risk Canagliflozin Cardiovascular Assessment Study.

Conclusions We describe a validated risk algorithm that accurately predicts cardio-kidney outcomes across a broad 
range of baseline risk.

Trial registration CREDENCE (Canagliflozin and Renal Events in Diabetes with Established Nephropathy 
Clinical Evaluation; NCT02065791) and CANVAS (Canagliflozin Cardiovascular Assessment Study; NCT01032629/
NCT01989754).

Keywords Diabetic kidney disease, Canagliflozin, Diabetes mellitus, Risk prediction, Prognosis

A validated multivariable machine learning 
model to predict cardio-kidney risk in diabetic 
kidney disease
James L. Jr. Januzzi1,2*, Naveed Sattar3, Muthiah Vaduganathan4, Craig A. Magaret5, Rhonda F. Rhyne5, Yuxi Liu2, 
Serge Masson6, Javed Butler7,8 and Michael K. Hansen9

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12933-025-02779-5&domain=pdf&date_stamp=2025-5-14


Page 2 of 13Januzzi et al. Cardiovascular Diabetology          (2025) 24:213 

Research insights
What is currently known about this topic?

  • Persons with diabetic kidney disease are at high risk 
for cardio-kidneyevents. Predicting such events 
would be expected to allow for moretargeted 
intervention and efficient risk reduction.

What is the research question?

  • Can an inductive statistical approach using 
clinical and biomarkervariables be leveraged to 
produce a more accurate and validatedapproach 
for risk stratification of diabetic kidney disease in 
theCREDENCE trial?

What is new?

  • Machine learning was used to create a model that 
included clinical andbiomarker variables. The 
model was highly accurate for predicting abroad 
range of cardio-kidney outcomes and was validated 

both internallyin CREDENCE and externally in the 
CANVAS program.

How might this study influence clinical practice?

  • These findings could lead to a more personalized 
approach for reducingrisk in diabetic kidney disease.

Individuals with diabetes mellitus (DM) complicated by 
nephropathy represent a high-risk population, prone 
to progressive kidney failure and major cardiovascu-
lar events [1–4]. Despite this well-defined risk, a broad 
range of hazard exists within this population and ability 
of current tools to accurately predict cardio-kidney out-
comes is limited. Because of this, an emphasis has been 
placed by major societies on the development of more 
granular approaches for the evaluation and management 
of diabetic kidney disease (DKD) [5, 6]. An improved 
ability to discriminate presence and severity of cardio-
kidney syndrome in DKD would allow for more refined 
application of the growing list of treatments proven to 
reduce progression of disease and lower incident cardiac 

Graphical abstract

Persons with diabetic kidney disease (DKD) are at riskfor progressive kidney failure and cardiovascular (CV) events. 
Using datafrom the CREDENCE trial of patients with type 2 diabetes and DKD,machine learning techniques were 
applied to create a highly accuratealgorithm to predict progressive DKD and adverse CV outcomes. Thealgorithm was 
validated both within an internal CREDENCE cohort andexternally in the CANVAS trial.
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events. Effective treatments for DKD now include renin-
angiotensin inhibitors, sodium/glucose cotransporter-2 
inhibitors, glucagon-like peptide-1 receptor agonists and 
non-steroidal mineralocorticoid receptor antagonists, all 
of which are under-utilized and often applied in lower 
risk populations [4].

Recent work within the Canagliflozin and Renal Events 
in Diabetes with Established Nephropathy Clinical Eval-
uation (CREDENCE) trial dataset along with similar 
efforts in the Canagliflozin Cardiovascular Assessment 
Study (CANVAS; a trial of patients with type 2 DM and 
cardio-kidney risk) has clarified means by which to eval-
uate baseline risk for various cardio-kidney events among 
those in each trial. Such approaches have included the 
creation of risk prediction equations with clinical vari-
ables and circulating biomarkers to independently pre-
dict risk for outcomes such as progressive kidney failure 
or cardiovascular (CV) death [7–13]. Despite great 
interest to produce accurate tools to better predict out-
comes, shortcomings to risk prediction models include 
lack of parsimony for variable inclusion and an inability 
to emphasize relative variable significance to the model. 
Overcoming these limitations would be expected to be 
provide greater discrimination and calibration for risk 
discrimination.

In other CV and kidney disease states, machine learn-
ing approaches have been used to develop accurate, 
validated risk models for diagnosis and/or prognosis 
[14–17]. Tools developed in these prior efforts used mul-
tiple data inputs including biomarker results and clini-
cal variables with output that allowed for categorization 
of affected individuals as low, medium, or higher risk for 
the outcomes in question. Employing a similar method-
ology, the present work sought to develop a novel and 
comprehensive algorithm for the prediction of events 
in DKD. To do so, baseline clinical and all available bio-
marker variables from CREDENCE [18] were utilized to 
derive and internally validate a new panel; these results 
were then externally validated among study participants 
in CANVAS [19].

Methods
The design and results of the CREDENCE 
(NCT02065791) trial and CANVAS (NCT01032629 
and NCT01989754) program have been previously pub-
lished [18–20]. All study procedures for CREDENCE and 
CANVAS and subsequent analyses were approved by 
local ethics committees. Written informed consent was 
obtained for participation in both studies, including anal-
yses of biomarkers. Study investigators had full access 
to all the data in the study and take responsibility for its 
integrity and the data analysis. The data sharing policy of 
Janssen Pharmaceutical Companies of Johnson & John-
son is available at  h t t p  s : /  / w w w  . j  a n s  s e n  . c o m  / c  l i n  i c a  l - t r  i a  l 

s / t r a n s p a r e n c y. As noted on this site, requests for access 
to the study data can be submitted through Yale Open 
Data Access (YODA) Project site at http://yoda.yale.edu.

Study design and participant population
CREDENCE was a placebo-controlled trial of cana-
gliflozin 100 mg versus placebo in 4401 participants with 
DKD at a high risk of progression: study participants 
with type 2 DM and DKD (according to the presence of 
estimated glomerular filtration rate [eGFR] between 30 
and 90 mL/min/1.73 m2 and urinary albumin:creatinine 
ratio [UACR] of > 300) were enrolled. In this analysis, the 
2711 study participants with available baseline plasma 
for analysis of biomarkers were included. The study was 
performed in 34 countries with significant European 
representation.

Plasma samples were collected at baseline and stored 
at–80  °C. The biomarkers in this analysis were planned 
and analyzed across both programs allowing evaluation 
across a wide range of canagliflozin-treated study par-
ticipants. All biomarkers were measured via standard 
analytical methods in an independent laboratory by per-
sonnel. Markers evaluated included N-terminal pro–B-
type natriuretic peptide (NT-proBNP), high-sensitivity 
cardiac troponin T (hs-cTnT), growth differentiation fac-
tor-15 (GDF-15), insulin-like growth factor binding pro-
teins 1, 3 and 7 (IGFBP1, IGFBP3, and IGFBP7), placental 
growth factor (PlGF), soluble FMS-like tyrosine-kinase-1 
(sFLT1), angiopoietin-2, and vascular endothelial growth 
factor-A (VEGF-A).

Goals of the present analysis
The goals of the present analysis were to develop a mul-
tivariable algorithm using baseline clinical variables and 
biomarker data to predict the primary composite end-
point of the CREDENCE trial by the 3-year time horizon 
of the trial. This primary composite endpoint included 
adjudicated endpoints of end-stage kidney disease (dial-
ysis, transplantation, or a sustained eGFR of < 15  mL/
min/1.73  m2), doubling of the serum creatinine level, 
renal death or CV death. Given importance of albumin-
uria as a predictor of the primary composite endpoint, 
we also evaluated performance of the developed algo-
rithm among study participants as a function of baseline 
UACR. In addition, as progression of CKD in type 2 dia-
betes is frequently accompanied by heightened cardio-
vascular risk, we sought to evaluate association between 
the algorithm (developed to predict the primary compos-
ite endpoint of CREDENCE) and major cardio-kidney 
outcomes including end-stage kidney disease, doubling 
of serum creatinine, CV death, all-cause death, heart fail-
ure (HF) hospitalization and the composite of CV death/
HF hospitalization.

https://www.janssen.com/clinical-trials/transparency
https://www.janssen.com/clinical-trials/transparency
http://yoda.yale.edu
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Lastly, we sought to validate the performance of the 
algorithm among study participants in CANVAS, a pop-
ulation with type 2 diabetes, heightened cardio-kidney 
risk (but much lower baseline prevalence of DKD) and 
with availability of the same baseline features required by 
the developed risk algorithm as well as the same adjudi-
cated composite endpoints. Much as with CREDENCE, 
the CANVAS program enrolled participants in 30 coun-
tries including significant European representation.

Statistical analyses
To directly identify predictors of a primary composite 
endpoint event by 3  years, only those CREDENCE trial 
participants with available follow up data and no miss-
ingness were included; this resulted in a sample size with 
complete data of 1117 study participants. These study 
participants in CREDENCE were then randomly split 
into training (60%; N = 671) and internal validation sets 
(40%; N = 446). Baseline characteristics were compared 
between those with and without the primary composite 
outcome of the CREDENCE trial; dichotomous variables 
were compared by using 2-sided Fisher exact tests, and 
continuous clinical variables were compared by using 
2-sided 2-sample Student t tests. The biomarkers com-
pared were tested with the Wilcoxon rank sum test.

All studies for biomarker selection and the develop-
ment of the prognostic algorithm were conducted exclu-
sively on the training set. To facilitate the predictive 
analysis, the concentration values for all proteins were 
transformed as follows: 1) they were log-transformed to 
achieve a normal distribution; 2) outliers were clipped at 
the value of 3 times the median absolute deviation; and 
3) the values were rescaled to a distribution with a zero 
mean and unit variance. The starting sets of variables 
consisted of all clinical factors in the CREDENCE data-
set along with concentrations of all available biomarkers. 
Candidate panels of proteins and clinical features were 
selected via least angle regression [21]. In this method, 
factors are selected one at a time and evaluated for pre-
dictive performance and goodness of fit at each step in 
that if the new variable improves the score performance, 
that variable is retained in the panel, and another variable 
is added. If the new variable does not improve the perfor-
mance, it is removed from the panel, and the next-best 
variable is selected. This method is repeated until there 
are no options left that satisfy the algorithm’s goodness-
of-fit requirements.

With this panel of interest, predictive analyses were run 
on the training set by using least absolute shrinkage and 
selection operator (LASSO) with logistic regression [22]; 
LASSO is a statistical and machine learning technique 
that improves accuracy of models by reducing overfit-
ting. The present goal was creation of a model to predict 
the primary composite endpoint of CREDENCE, using 

only the variables in the panel of interest. From the analy-
sis results, the LASSO’s shrinkage performance was used 
to determine when a given variable was not contributing 
significantly to the model; in those cases, we removed the 
variable and repeated the analysis.

Candidates were then subjected to assessment of 
improvement in calibration from their addition through 
minimization of the Akaike or Bayesian information 
criteria and goodness of fit in Hosmer–Lemeshow test-
ing. For each variable, the fraction of new information 
was calculated using logistic regression with McFadden’s 
pseudo-R2 to determine the likelihood ratios.

Subsequently, the final algorithm was evaluated with 
the internal validation set: to do so, we generated the 
score distribution within the validation cohort, followed 
by C-statistic generation. Operating characteristics of 
the algorithm result were calculated, with sensitivity, 
specificity, positive predictive value (PPV), and negative 
predictive value (NPV) generated. An optimum binary 
prognostic cut-off using Youden’s index was determined. 
Following, the model results were rescaled to a range 
from 0 to10 using min–max normalization. After this, 
the range of the prognostic algorithm (a continuous vari-
able) was then partitioned into 3 different risk levels, 
corresponding to multiple levels of risk. The partitions 
were determined according to PPV and NPV > 90% in the 
training set, and the validation set was evaluated against 
these partitions. participants were accordingly catego-
rized by low risk (< 3), medium risk (3 to < 5) and higher 
risk (≥ 5).

To evaluate prognostic meaning of results from the risk 
algorithm, Cox proportional hazards analyses adjusted 
for algorithm result were performed to evaluate predic-
tive value for the primary composite endpoint; hazard 
ratios (HRs) were estimated. To do so, we evaluated HR 
at the optimal binary threshold, as well as per-unit score 
increases; additionally, a three-tiered approach of low-, 
medium-, and high-risk score was also explored. HRs 
were provided with 95% confidence intervals (CI). Time 
to first primary composite endpoint as a function of ele-
vated DKD score was calculated, displayed as Kaplan–
Meier survival curves, and compared by using log-rank 
testing.

Given the importance of UACR as a predictor of the 
primary composite endpoint of CREDENCE, the perfor-
mance of the final panel was compared to UACR for pre-
dicting the endpoint in question. Furthermore, risk for 
the primary composite endpoint across UACR levels was 
evaluated.

Lastly, performance of the DKD risk algorithm was 
further validated among study participants in CANVAS 
with available baseline clinical variables and biomarker 
information.
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All statistics were performed by using R software, 
version 4.3.1 (R Foundation for Statistical Computing, 
Vienna, Austria). P values are 2-sided, with a value < 0.05 
considered significant.

Results
A study flow diagram for the CREDENCE study partici-
pants included in the present analysis is detailed in Sup-
plemental Fig.  1. From a starting population of 2711 in 
the CREDENCE trial, there were 1117 study participants 
with sufficient follow up and complete data from which 
analyses were performed. Supplemental Table  1 details 
comparisons between baseline characteristics of those 
included versus those not included from the CREDENCE 
trial dataset. This does show some differences between 
those included and those not included, with a pattern 
suggesting those included in the derivation and valida-
tion had higher concentrations of UACR and cardio-kid-
ney stress biomarkers.

Characteristics of the CREDENCE trial derivation and 
validation sets
The baseline characteristics of the included study partici-
pants from the CREDENCE training set are detailed in 
Table 1, broken down as a function of incident primary 
composite endpoint during the trial. This demonstrates 
several noteworthy differences associated with the devel-
opment of the primary endpoint, including worse kidney 
function, higher blood pressure, and a more elevated 
UACR (1867 vs. 740 mg/g; P = 0.001) among those suffer-
ing a DKD complication. Furthermore, those destined to 
suffer the primary endpoint had higher median (Q1, Q3) 
concentrations of NT-proBNP (380 [163, 975] vs. 175 
[81, 396]; P = 0.001), hs-cTnT (27.8 [17.7, 42.9] vs. 18.5 
[12.2, 26.7]; P = 0.001), IGFBP7 (140.7 [123.4, 161.1] vs. 
119.4 [104.4, 137.1]; P < 0.001), and GDF-15 (3269 [2340, 
4930] vs. 2456 [1840, 3421]; P < 0.001). Generally similar 
patterns were seen in the CREDENCE trial internal vali-
dation set (Supplemental Table 2).

Predictors of 3-year DKD events in the CREDENCE trial: 
Derivation Cohort
Over a median follow up of 1165 days, study participants 
in the derivation cohort experienced 187 primary end-
point events. Variables predictive of the primary com-
posite endpoint of the CREDENCE trial were identified 
using machine learning. In order of predictive impor-
tance in the final model, these included: age (lower age 
associated; P < 0.001), IGFBP-7 (higher concentrations 
associated; P < 0.001), NT-proBNP (higher concentra-
tions associated; P < 0.001), BMI (lower BMI associated; 
P < 0.001), hs-cTnT (higher concentrations associated; 
P < 0.001), GDF-15 (higher concentrations associated; 
P = 0.001), and systolic blood pressure (higher pressures 
associated; P = 0.01). This final model was then fitted into 
a proprietary risk algorithm, weighting the individual 
components based on their a) relative importance to the 
model and b) their numerical value.

Table 1 Baseline characteristics of the study population in the 
CREDENCE derivation cohort
Variable With primary 

endpoint 
(N = 187)

Without 
primary 
endpoint 
(N = 484)

P

Age, years, mean (SD) 61.9 (8.7) 64.0 (8.8) 0.006
Male sex, n (%) 118/187 

(63.1%)
347/484 
(71.7%)

0.03

White race, n (%) 121/187 
(64.7%)

353/484 
(72.9%)

0.04

Black race, n (%) 12/187 (6.4%) 34/484 (7%) 0.87
eGFR, mL/min/1.73m2 mean 
(SD)

49.4 (18.1) 58.0 (17.7)  < 0.001

BMI, Kg/m2 mean (SD) 30.8 (6.1) 32.6 (6.4)  < 0.001
Systolic blood pressure, 
mmHg (SD)

143.7 (16.3) 139.8 (15.7) 0.006

HbA1c, %, mean (SD) 8.3 (1.3) 8.0 (1.2) 0.009
UACR mg/g, median (Q1, 
Q3)

1867 (1070, 
3003)

740 (431, 
1467)

0.001

Duration of diabetes, years, 
mean (SD)

15.7 (7.6) 16 (8.5) 0.67

History of heart failure, n (%) 33/187 (17.6%) 57/484 
(11.8%)

0.06

Diuretic use, n (%) 92/187 (49.2%) 249/484 
(51.4%)

0.61

NT-proBNP, ng/L, median 
(Q1, Q3)

380 (163, 975) 175 (81, 396) 0.001

hs-cTnT, ng/L, median (Q1, 
Q3)

27.8 (17.7, 42.9) 18.5 (12.2, 
26.7)

0.001

IGFBP7, ng/mL, median 
(Q1, Q3)

140.7 (123.4, 
161.1)

119.4 (104.4, 
137.1)

 < 0.001

GDF-15, ng/L, median (Q1, 
Q3)

3269 (2340, 
4929.5)

2455.5 
(1839.8, 
3420.8)

 < 0.001

IGFBP1, ng/mL, median 
(Q1, Q3)

105 (72.6, 
141.6)

99.3 (75.8, 
131.6)

0.43

IGFBP3, ng/mL, median 
(Q1, Q3)

3182 (2464, 
4035)

3085 (2430, 
4003)

0.59

sFLT-1, ng/mL, median (Q1, 
Q3)

99.6 (88.3, 
110.6)

93 (85.6, 
103.5)

 < 0.001

VEGFA, pg/mL, median (Q1, 
Q3)

64.5 (46, 114) 61.6 (41, 
100.1)

0.19

Angiopoietin-2, ng/mL, 
median (Q1, Q3)

2.2 (1.6, 3.1) 1.8 (1.4, 2.5)  < 0.001

PlGF, ng/mL, median (Q1, 
Q3)

19.0 (15.8, 21.9) 16.5 (14, 19.5)  < 0.001

SD standard deviation; eGFR estimated glomerular filtration rate; mL milliliters; 
min minute; m2: squared meters; BMI body-mass index; Kg kilogram; mmHg 
millimeters of mercury; HBA1c hemoglobin A1c; UACR urinary albumin-creatinine 
ratio; mg/g milligrams per gram; Q quartile; NT-proBNP N-terminal pro-B type 
natriuretic peptide; hs-cTnT: high sensitivity cardiac troponin T; IGFBP7: insulin-
like growth factor binding protein 7; GDF-15: growth differentiation factor 15; 
IGFBP1: insulin-like growth factor binding protein 1; IGFBP3 insulin-like growth 
factor binding protein 3; sFLT-1 soluble FMS-like tyrosine kinase-1; VEGFA 
vascular endothelial growth factor-A; PlGF placental growth factor
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Distribution of the DKD risk algorithm results among 
individuals in the derivation cohort with and without 
the primary composite endpoint outcome of adjudicated 
end-stage kidney disease, doubling of the serum creati-
nine level, or renal death or CV death are demonstrated 
in Supplemental Fig.  2, which shows excellent separa-
tion of those who did or did not experience the primary 
endpoint.

In analyses of discrimination for the primary endpoint 
by 3 years following enrollment, the DKD risk algorithm 
had an in-sample C-statistic of 0.80 (95% CI = 0.77–0.83; 
P < 0.001) (Fig.  1). In logistic regression, the continu-
ous result from the algorithm was associated with a HR 
of 2.03 (95% CI = 1.83–2.26; P < 0.001). Using a single 
optimal cut-point selected using the Youden approach 
yielded a HR for the primary composite endpoint of 5.97 
(95% CI = 4.25–8.37; P < 0.001). The optimal cutoff had 
sensitivity of 76%, specificity of 72%, PPV of 51% and 
NPV of 89%. Comparing the DKD risk algorithm (which 
included different weights to the constituent variables) 
to an unweighted Cox model with each of the constitu-
ent variables (the “null” model), the C-statistics were con-
siderably different; the DKD risk algorithm C-statistic of 
0.80 was significantly higher than the null model (0.68; 
95% CI = 0.63–0.72; P < 0.001 for difference).

Expanding the algorithm into 3 tiers of risk (< 3, 3 
to < 5, ≥ 5), in the derivation cohort, there were 176 study 
participants at risk level 1 (corresponding to a numeri-
cal value of 0 to < 3), 321 in risk level 2 (corresponding 
to a numerical value of 3 to < 5), and 174 in risk level 3 
(corresponding to a numerical value of 5–10). For each 
increase in risk level, the HR was 3.43 (95% CI = 2.72–
4.32; P < 0.001). The operating characteristics in the deri-
vation cohort demonstrated that those with risk level 1 
(corresponding to a DKD algorithm result of < 3) had 
NPV of 94%, while those with risk level 3 (corresponding 
to a DKD algorithm result of ≥ 5) had PPV of 58%.

In Supplemental Table 3, results demonstrate the algo-
rithm was well-calibrated in the derivation cohort with 
each individual variable showing minimization of the 
AIC/BIC and with negative Hosmer–Lemeshow P values. 
The fraction of new information added by each variable is 
also shown in Supplemental Table 4.

As shown in the Kaplan–Meier curves detailed in 
Fig. 2, the three-tiered DKD risk algorithm had consider-
able ability to discriminate different times to onset of the 
primary composite endpoint of end-stage kidney disease, 
doubling of the serum creatinine level, renal death or CV 
death (Log-rank P value < 0.001). Notably, risk curves 
diverged prior to the first year after study entry and con-
tinued to separate over the duration of time in the study.

Internal validation in CREDENCE
The DKD risk algorithm was then evaluated within an 
internal validation set of 446 CREDENCE trial partici-
pants who experienced 123 events during a median fol-
low up of 1163  days. Distribution of the risk model 
results are shown in Supplemental Fig. 2 again showing 
good separation of those who did or did not experience 
the primary endpoint.

Also shown in Fig.  1, the DKD risk algorithm had an 
internally validated C-statistic of 0.80 (95% CI = 0.76–
0.84; P < 0.001); this result is nearly identical to the deri-
vation cohort. The sensitivity, specificity, PPV, and NPV 
of the optimal cutoff in the internal validation cohort 
were 76%, 74%, 52%, and 89%; all are also similar to the 
derivation cohort. A comparison of the DKD risk algo-
rithm to an unweighted Cox model containing the same 
variables showed a lower C-statistic in the Cox model 
(0.66, 95% CI = 0.61–0.72; P < 0.001 for difference).

There were 128, 205, and 113 study participants in vali-
dation risk levels 1, 2, and 3 respectively. At risk level 1, 
the NPV for the primary composite endpoint was 95%, 
while risk level 3 had a PPV of 58%. The continuous DKD 
risk algorithm had a HR of 2.07 per risk level increment 
(95% CI = 1.81–2.36; P < 0.001) while the optimal cut-
point selected using the Youden method had a HR for the 
primary composite endpoint of 6.04 (95% CI = 4.00–9.12; 
P < 0.001). Considered in groupings of low, medium, and 
high risk, for each risk level increment the HR for the 
primary composite endpoint increased with a HR of 3.64 
(95% CI = 2.74–4.84; P < 0.001). As shown in Supplemen-
tal Table 3, the model was well-calibrated in the internal 
validation cohort with each individual variable showing 
minimization of the AIC/BIC and with negative Hos-
mer–Lemeshow P values.

In the internal validation cohort, Kaplan–Meier analy-
ses demonstrate excellent discrimination for time to first 
event of end-stage kidney disease, doubling of the serum 
creatinine level, or renal death or CV death (Fig. 2) com-
parable to the derivation cohort.

Canagliflozin treatment
The CREDENCE derivation and validation cohorts were 
pooled to evaluate impact of canagliflozin on the primary 
composite endpoint, and to examine change in the DKD 
risk algorithm score from baseline to year 1 as a function 
of treatment assignment.

Across DKD algorithm results at baseline, the impact 
of canagliflozin to reduce the primary composite end-
point was generally consistent, without heterogeneity. 
Impact of canagliflozin on the rate difference per 100 
patient-years in the primary composite endpoint was 
similar across all scores whether examined as a continu-
ous variable (Supplemental Fig. 3; P for interaction = 0.85) 
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Fig. 1 Receiver operator characteristic curve analysis showing accuracy of the DKD risk algorithm at baseline to predict the primary composite endpoint 
3 years from enrollment. The risk model had excellent discrimination in the A internal derivation and B internal validation cohort from CREDENCE as 
evidenced by high area under the curve (AUC)
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Fig. 2 Kaplan–Meier curves detailing time to first primary composite outcome event in the A derivation and B internal validation cohorts from CRE-
DENCE. Those with higher DKD risk algorithm scores had shorter time to first events compared to lower scores (Log-rank P value < 0.001)
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or in score tertiles (P for interaction = 0.71; Supplemental 
Fig. 4).

From baseline to 1  year, the overall change in DKD 
algorithm result was a median (Q1, Q3) change of 
− 0.20% (− 11.35%, + 11.56%). In those treated with cana-
gliflozin median change in the algorithm result was a 
decrease of − 2.7% (− 12.1%, + 9.5%); this was significantly 
different than those treated with placebo, who experi-
enced an increase of + 1.8% (− 9.5%, 14.2%; P value for 
difference = 0.001).

From baseline to 1  year, study participants’ change in 
DKD algorithm result were categorized into quartiles; 
compared to the lowest quartile of 1 year change as refer-
ent, the HR for subsequently suffering the primary com-
posite endpoint was 0.83 (P = 0.83), 1.60 (P = 0.03), and 
4.23 (P < 0.001) for DKD algorithm change quartiles 2, 3, 
and 4.

The association between a DKD risk algorithm score 
above the optimal threshold value and various cardio-
kidney outcomes in the CREDENCE internal validation 
cohort are detailed in Supplemental Table 5. This shows 
elevated score were strongly and statistically significantly 
predictive of end-stage kidney disease (N = 88 events), 
doubling of serum creatinine (N = 103 events), CV death 
(N = 76 events), all-cause death (N = 85 events), HF hospi-
talization (N = 44 events) and the composite of CV death/
HF hospitalization (N = 110 events).

External validation in CANVAS
Following derivation, characterization, and internal vali-
dation of the DKD risk algorithm in CREDENCE, the 
score was then applied to study participants in CANVAS. 
In this external validation cohort, the risk for the same 
primary endpoint of end-stage kidney disease, doubling 
of the serum creatinine level, renal death or CV death 
was lower; of 3265 study participants at baseline, there 
were 115 adjudicated primary composite endpoint events 
during an average 2217 days of follow up. The C-statistic 
for the DKD risk algorithm in CANVAS was 0.72 (95% 
CI 0.68–0.76; P < 0.001). Despite the lower C-statistic in 
CANVAS, the HR for the continuous score was in CAN-
VAS was 2.17 (95% CI = 1.87–2.51; P < 0.001) per score 
increment for the primary composite endpoint, which 
was similar to that in CREDENCE (HR = 2.03). Similarly, 
the optimal single cutoff performance showed a HR of 
6.57 (95% CI = 4.42–9.78; P < 0.001) for the primary end-
point in CANVAS. The 3-level risk model was associated 
with a HR of 3.41 (95% CI = 2.66–4.38; P < 0.001) per risk 
level increase (from low to medium or medium to high) 
for the primary composite endpoint. In CANVAS, as 
with the CREDENCE study participants, Kaplan–Meier 
analyses show significant separation of low, medium, and 
high risk patients with respect to time to first primary 
composite endpoint event (Fig. 3).

To the extent that study participants in CANVAS dif-
fered from those in CREDENCE in that nephropathy was 

Fig. 3 Time to first primary composite endpoint in the external validation set of CANVAS. Those with higher DKD risk algorithm scores had shorter time 
to first event compared to lower scores (Log rank P value < 0.001)
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not required for entry to the former program, we then 
examined performance of the DKD risk algorithm for 
predicting the primary composite endpoint in those with 
UACR < 30, 30–300, and > 300 mg/g (the latter being the 
threshold for inclusion to CREDENCE). In these UACR 
groupings the C-statistics for the DKD risk algorithm in 
CANVAS were 0.63 (95% CI 0.57–0.70; P < 0.001), 0.74 
(95% CI 0.66–0.81; P < 0.001), and 0.70 (95% CI 0.61–
0.80; P = 0.02) respectively).

Urinary albumin to creatinine ratio
Although UACR is a known risk factor for progression 
of DKD, this variable was not selected by the inductive 
methodology to predict the primary endpoint of CRE-
DENCE in the presence of the other variables that were 
selected. Nonetheless, UACR represents both a diagnos-
tic and prognostic variable for DKD. Given established 
use of UACR to prognosticate cardio-kidney outcomes, 
how the DKD risk algorithm predicts the primary end-
point versus UACR was therefore of interest.

In the CREDENCE derivation and validation cohorts, 
the C-statistic for UACR was 0.75 (95% CI = 0.71–0.78) 
and 0.72 (95% CI = 0.67–0.77) respectively, while in 
CANVAS it was 0.66 (95% CI = 0.61–0.70); in each case, 
the C-statistic for UACR was significantly lower than the 
DKD algorithm. To further understand model impor-
tance relative to UACR, we next examined implica-
tion of a low numerical DKD risk algorithm result (< 3) 
across baseline tertiles of UACR; as shown in Table 2, in 
the setting of a low DKD risk result the HR across UACR 
was < 1, implying a lower risk for the primary endpoint 
regardless of UACR, while an elevated DKD risk algo-
rithm score was consistently associated with higher risk 
for the primary endpoint across all strata of UACR.

Discussion
In this analysis from the CREDENCE trial, we report sev-
eral findings (Graphical Abstract). First, using LASSO, a 
form of machine learning, available data from the trial 
program was fitted into a novel algorithm to predict or 

exclude risk for the development of the carefully adju-
dicated primary composite endpoint of the trial. This 
algorithm includes only those variables that provide the 
most parsimonious and accurate discrimination for the 
event, but then weights the variables based on their rela-
tive importance. The variables identified in this model 
included clinical variables as well as results of highly 
refined automatic immunoassays to yield a prognostic 
model for DKD that has considerable accuracy. When 
subjected to an internal validation within a hold-out 
group in the CREDENCE trial dataset, the risk algorithm 
performed consistently. Across scores at baseline, there 
was no heterogeneity for response to canagliflozin with 
respect to benefit on future DKD events, although argu-
ably the relative benefits appeared more obvious in those 
with intermediate or higher scores. Additionally, increase 
in the score over time was associated with higher likeli-
hood for DKD events; less increase was seen in those 
treated with canagliflozin. Lastly, the algorithm was 
externally validated in the generally lower-risk CANVAS 
program, remaining prognostic for DKD events even 
among those without prevalent DKD at baseline.

Although characterized by a progressive decline in 
eGFR, DKD has a variable prognosis and unpredictable 
trajectory [3]. Although clinical variables may be useful 
to predict the course of DKD, accuracy of such variables 
may vary. Nonetheless, the detection of risk in this popu-
lation is identified by major kidney and diabetes societies 
as a top priority [5, 6], particularly as numerous therapies 
to reduce events in higher risk individuals with DKD are 
now available. To this extent, a risk-based approach to 
accelerated application of therapies with proven benefit 
in the diagnosis has been proposed [4] but a great need 
thus exists for accurate tools to accurately estimate like-
lihood of cardio-kidney events; such knowledge would 
be expected to assist in more cost-effective therapeutic 
decision-making. For example, given the staged nature 
of treatment for DKD, elevated risk scores would be 
expected to facilitate more precise administration of 
therapies such as renin-angiotensin inhibitors, SGLT2 

Table 2 Implications of the DKD risk algorithm across baseline tertiles of UACR. The HR for the primary composite endpoint is 
expressed as a function of low or high DKD risk within tertiles of UACR. In the setting of a low-risk DKD algorithm result, the HR for the 
primary composite endpoint was low and without difference across UACR tertiles. Conversely, in the setting of high risk DKD algorithm 
result, risk for the primary composite endpoint was present even in lower UACR tertiles

CREDENCE derivation CREDENCE validation CANVAS validation
Category HR 95% CI P value HR 95% CI P value HR 95% CI P value
Low DKD risk result/UACR Tertile 1 0.38 0.15–0.95 0.04 0.16 0.05–0.55 0.004 0.33 0.21–0.52  < 0.001
Low DKD risk result/UACR Tertile 2 0.12 0.03–0.50 0.004 0.16 0.04–0.69 0.01 0.35 0.09–1.37 0.13
Low DKD risk result/UACR Tertile 3 0.16 0.05–0.49 0.002 0.08 0.01–0.58 0.01 0.10 0.02–0.43 0.002
High DKD risk result/UACR Tertile 1 2.37 0.90–6.26 0.08 4.98 1.81–13.73 0.002 2.17 1.87–2.51  < 0.001
High DKD risk result/UACR Tertile 2 4.30 2.26–8.21  < 0.001 5.78 2.78–12.02  < 0.001 3.10 0.66–14.58 0.15
High DKD risk result/UACR Tertile 3 3.18 2.20–4.59  < 0.001 2.62 1.64–4.20  < 0.001 4.40 2.17–8.91  < 0.001
DKD diabetic kidney disease; UACR urinary albumin-creatinine ratio; HR hazard ratio; CI confidence interval
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inhibitors, non-steroidal mineralocorticoid receptor 
antagonists or glucagon like peptide-1 receptor agonists.

Prior studies from our group have utilized machine 
learning to create algorithms for use in other disease 
states that combine key variables to improve upon stan-
dard modeling [14–17, 23]. Using completely new data-
sets and focused on an outcome (DKD) not previously 
considered with this methodology, the novel risk model 
described in this work has considerably higher discrimi-
nation than standard modeling and retains calibration 
for predicting the primary composite endpoint of CRE-
DENCE. A major limitation to most statistical models, 
generally speaking, is the application of non-inductive 
approaches and inclusion of all equally weighted vari-
ables into models that are often non-parsimonious. The 
advantage of the risk algorithm described in the present 
report is the use of methodology that leverages machine 
learning to select the most parsimonious model without 
bias, while also weighting each variable based on its rela-
tive importance to the outcome measure examined. In 
this analysis, the new DKD risk algorithm had substan-
tially better discrimination than using the same selected 
variables in a traditional Cox model.

Among individuals with DKD in CREDENCE, depend-
ing on the cut-point applied, the DKD risk algorithm 
had high NPV and PPV, showing that the score provides 
potential utility to either exclude or identify risk for pro-
gression of DKD. Furthermore, the performance of the 
derived model was validated with equal performance in 
an internal hold-out validation cohort in CREDENCE 
but also in a separate validation in the CANVAS program 
where the same variables were available. The C-statistic 
of the model for DKD events was lower in CANVAS. In 
this population, however this population only 17.5% of 
the population had significant proteinuria. Despite the 
difference in baseline characteristics and risk between 
the trials, the DKD risk algorithm predicted hazard for 
major cardio-kidney events in both trials.

Scores from the DKD algorithm result appeared to 
change over time, with rising values associated with 
higher risk for incident events. Although baseline results 
for the score did not predict subsequent response to 
canagliflozin, randomized allocation to the drug did 
result in lower DKD risk algorithm results at 1  year. 
Lower score results at 1 year were associated with lower 
risk. This therefore implies that sodium-glucose cotrans-
porter-2 inhibitor treatment of individuals might be 
expected to attenuate progressive increase of the score, 
and in turn this finding is associated with lower risk for 
DKD events. More data are needed regarding the utility 
of the risk model described for longitudinal monitoring 
of DKD risk and interaction with its treatment.

The constituent variables in the developed risk algo-
rithm include clinical characteristics and circulating 

biomarkers, each contributing to the discrimination 
and calibration of the final risk model. Concentrations 
of NT-proBNP and hs-cTnT predict risk through the 
identification of individuals with cardiomyocyte stress 
and necrosis; both predict HF in this setting, a com-
mon and severe complication among individuals with 
DKD. In a similar manner, both IGFBP-7 and GDF-15 
have been associated with progressive cardiac and kid-
ney dysfunction, and both are independently linked to 
adverse cardiovascular outcomes. It would be expected 
that the various components of the risk model could be 
fit into an automated algorithm to rapidly calculate a 
score for the patient. Notably, NT-proBNP and hs-cTnT 
are already commercially-available, while highly-refined, 
large throughput automated immunoassays are available 
for research use of IGFBP-7 and GDF-15; theoretically if 
these latter two biomarkers were finally brought to clini-
cal use, all 4 biomarkers could be rapidly run from the 
same blood sample and on the same instrument. Thus, 
together with easily ascertained clinical features and 
advances in data management, it is reasonable to expect 
rapid generation of a DKD risk result.

Although UACR is a validated biomarker in DKD with 
prior studies illustrating prognostic meaning in those 
with elevated UACR results, it is noteworthy that UACR 
was not selected by the machine learning methodology. 
Furthermore, in post hoc comparisons, the DKD risk 
algorithm was clearly superior to UACR for predicting 
future DKD events, with higher primary composite end-
point event rates in those with a high DKD algorithm 
result despite low UACR. One argument might be the 
discrimination of UACR is sufficient and the low cost of 
this biomarker makes this difference in prognostic accu-
racy acceptable. First, the results imply the risk model 
can prognosticate across a wide range of cardio-kidney 
risk, identifying risk in those with or without abnormal 
UACR. Second, the difference in discrimination in this 
study was not small, substantially favoring the model 
without UACR. Third, despite the potential added costs 
from different biomarkers than UACR, arguably the more 
refined ability to predict risk and intervene in a more 
targeted manner would be expected to be highly cost 
effective.

This study illustrates the applicability of the methods 
used in this analysis for other disease states where pre-
existing datasets might be available with already-devel-
oped and/or commercialized biomarkers.

Limitations
Although this study demonstrates the feasibility of novel 
techniques to translate results from prognostic model-
ing into a clinically useful prognostic tool for the care 
of patients with risk for DKD events, there are limita-
tions. Both the derivation and validation cohorts in this 
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analysis involve participants of clinical trials who may be 
different from the real-world population; this may have 
both advantage and limitations. On the one hand, it is an 
advantage to have a clearly defined clinical profile that 
avoids unexpected confounding from excluded comor-
bidities. On the other hand, it may limit applicability of 
the findings of this analysis to larger populations of those 
with DKD. Thus, although validated both internally in 
CREDENCE and externally in CANVAS (considerably 
more validation than many risk algorithms are subjected 
to), the DKD risk algorithm should be further evaluated 
in other datasets. Second, we constrained the model deri-
vation and internal validation only to those study partici-
pants in CREDENCE with complete variables and follow 
up. Although this allowed for confidence in the develop-
ment of the risk algorithm without imputation of missing 
variables, the study participants that were included for 
the analysis had more advanced DKD compared to those 
who were not included. Use of imputation might address 
this issue, however imputation of outcome data (the main 
cause of missingness) is argued to increase noise to sta-
tistical estimates. Prior analyses have focused on simi-
lar biomarkers for prognosticating in CREDENCE [9]. 
The present analysis not only uses completely different 
methodology to develop a prognostic algorithm, it dem-
onstrates superiority of this model compared to standard 
Cox modeling and further validates the results in CAN-
VAS, something that was not previously done. Despite 
the development of highly precise automated immunoas-
says for GDF-15 and IGFBP7, these tests remain research 
use only at present but are far more advanced in their 
development than most biomarkers identified in transla-
tional analyses such as those identified using proteomics. 
Given how advanced these two research use assays are, 
theoretically, the panel identified in the present analy-
sis could be commercialized in a rapid fashion, either 
as a lab-developed test or through regulatory clearance. 
Lastly, the endpoints examined in this analysis included 
a mix of cardiac and kidney outcomes. We actually view 
this as a strength as the focus on cardio-kidney-meta-
bolic outcomes continues to grow; furthermore, these 
results were carefully adjudicated by a blinded endpoints 
committee in each of the two trials, which is also a great 
strength.

In conclusion, we developed a highly accurate and 
validated risk algorithm to predict risk for cardio-kid-
ney events including progressive kidney disease, renal 
death or CV death, the primary composite endpoint 
of the CREDENCE trial. The DKD risk algorithm was 
assembled using inductive machine learning allowing 
it to be considerably more accurate for predicting risk 
than a standard Cox proportional hazards model. The 
DKD risk algorithm provided utility not only to exclude 
risk but also to predict it, and results from the algorithm 

appeared to change over time in parallel with risk, sug-
gesting potential value for monitoring patients seri-
ally. When validated in lower-risk study participants in 
CANVAS, the DKD risk algorithm not only performed 
similarly in those patients that were more like those in 
CREDENCE (with established DKD at baseline) but also 
predicted incident DKD events in those without the diag-
nosis at baseline. Despite being eligible for treatment, a 
substantial minority with cardio-metabolic-kidney dis-
ease receive SGLT2 inhibitors [24]. Accordingly, the 
development of this risk tool responds to the challenge 
articulated for newer and more refined tools to judge risk 
in DKD [5, 6] and suggests that novel techniques such as 
the one utilized to develop this risk algorithm might be 
more widely applied to improve cardio-metabolic diag-
nostics and prognostics.
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