
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​
v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​​i​c​e​​n​s​e​s​​/​b​​y​-​n​c​-​n​d​/​4​.​0​/.

Hu et al. Cardiovascular Diabetology          (2025) 24:209 
https://doi.org/10.1186/s12933-025-02770-0

Cardiovascular Diabetology

†Lin Hu, Jiayuan Li contributed equally to this work.

*Correspondence:
Chunxia Yang
yangchunxia@scu.edu.cn
Tao Zhang
statzhangtao@scu.edu.cn

Full list of author information is available at the end of the article

Abstract
Background  Recent basic biological research found that obesity accelerates biological aging and increases 
cardiovascular disease (CVD) risk. However, there is still a lack of real-world population evidence. This study aimed to 
explore the potential mediation roles of biological age acceleration in the associations between different dimensions 
of obesity characterization and incident CVD.

Methods  This international multi-cohort study included participants aged over 45 years with 3 waves longitudinal 
data from China Health and Retirement Longitudinal Study (CHARLS). China Health and Nutrition Survey (CHNS) was 
used to develop Klemera-Doubal method-biological age (KDM-BA), and the validation analysis was performed in UK 
Biobank (UKB) and Hongguang Elderly Health Examination Cohort (HEHEC). Obesity indices including body mass 
index (BMI), waist circumference (WC), waist height ratio (WtHR), body roundness index (BRI) for body shape; Chinese 
visceral adiposity index (CVAI), lipid accumulation product (LAP) for visceral fat accumulation; triglyceride-glucose 
index (TyG) and its derivatives (TyG-BMI, TyG-WC, TyG-WtHR) for metabolic function were used to measure obesity 
across different dimensions. Biological age acceleration was evaluated by the classic KDM-BA acceleration (KDM-
BAacc). Causal mediation analyses assessed the role of biological age acceleration in mediating obesity and incident 
CVD.

Results  In CHARLS, the median follow-up period was 9.00 years, with a baseline age of 58 (52, 65) years. Obesity, 
KDM-BAacc, and CVD were all significantly associated with each other. For each 1-year increase in KDM-BAacc, 
the risk of incident stroke, heart disease and CVD increased by 68% (OR 1.68, 95% CI 1.35–2.09), 35% (OR 1.35, 95% 
CI 1.15–1.59), and 44% (OR 1.44, 95% CI 1.25–1.65), respectively. KDM-BAacc mediated the associations between 
BMI, WC, WtHR, BRI, CVAI, LAP, TyG-BMI, TyG-WC, TyG-WtHR, with CVD, with the mediation proportions ranging 
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Background
Cardiovascular diseases (CVD), especially stroke and 
ischemic heart disease, remain leading causes of morbid-
ity and mortality globally, particularly among older adults 
[1, 2]. With rapid global aging, CVD prevalence is pro-
jected to increase substantially by 2050, posing signifi-
cant public health challenges [3, 4]. Obesity, a significant 
modifiable risk factor for CVD [5], is inadequately cap-
tured by commonly used indices [6–8]. Therefore, obesity 
and its metabolic risks should be evaluated from multiple 
dimensions, including body shape, visceral fat accumula-
tion, and metabolic function.

Recent basic biological research demonstrated that 
obesity promoted biological aging through chronic 
inflammation and oxidative stress, impairing endo-
thelial function and accelerating vascular aging [9, 

10]. In adipose tissue, abnormal adipokine release and 
immune cell infiltration further intensify this pro-
inflammatory environment [11], hastening aging and 
heightening the risk of cardiovascular diseases [12–14]. 
However, research in real-world populations investigat-
ing the mediation pathway from obesity to incident CVD 
through biological age acceleration is still lacking, partic-
ularly among middle-aged and older individuals at high 
risk of CVD.

Currently, there is no gold standard for quantifying 
biological aging process. Different biological age (BA) 
estimation methods, including epigenetic clocks, Pheno-
typic Age (PhenoAge), and the Klemera-Doubal method 
(KDM), may capture distinct dimensions of aging [15]. 
KDM calculates biological age using routine clini-
cal biomarkers, is accessible and broadly applicable in 

from 10.03 to 25.46%. However, the mediating effect was significant mostly in middle-aged individuals aged 
45–65 years. Furthermore, sex differences existed in the mediation mechanisms. Biological age acceleration strongly 
mediated body shape indices and incident CVD in males, whereas in females, it predominantly mediated visceral fat 
accumulation and metabolic function dimensions with incident CVD. Similar main results were found in UKB and 
HEHEC.

Conclusions  Biological age acceleration partially mediates the relationship between obesity and incident CVD. 
This temporal evidence firstly validated the mediation pathway based on international cohorts, emphasizing the 
importance of addressing biological aging processes in population aged 45–65 years while providing sex-specific 
obesity intervention strategies to prevent CVD.
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epidemiological studies, and correlates with multiple age-
related diseases and mortality [16]. We hypothesized that 
the relationship between obesity and incident CVD was 
mediated by biological age acceleration. Biological age 
acceleration refers to the state in which an individual's 
biological age exceeds their chronological age (CA), indi-
cating faster aging and often associated with a decline in 
physiological function. In this study, it was calculated as 
the difference between the CA and classic KDM-biologi-
cal age (KDM-BA) [17]. Based on longitudinal follow-up 
data from the China Health and Retirement Longitudi-
nal Study (CHARLS), the UK Biobank (UKB), the Hong-
guang Elderly Health Examination Cohort (HEHEC), 
and the China Health and Nutrition Survey (CHNS), 
we studied the associations between different dimen-
sions of obesity characterization, biological age accelera-
tion, and incident CVD, examined whether and to what 
extent biological age acceleration mediates the associa-
tions of obesity and incident CVD, thereby emphasizing 
the importance of early-stage health care interventions to 
reduce CVD occurrence.

Methods
Study population
The primary analysis was based on China Health and 
Retirement Longitudinal Study (CHARLS), a nationally 
representative longitudinal survey conducted in China 
established in 2011, and subsequent follow-up surveys 
were scheduled at biennial intervals [18]. The CHARLS 
baseline survey utilized multistage stratified probabil-
ity proportional sampling, with interviews conducted 
with a nationally representative sample of the Chinese 
aged 45 years and older. More details of CHARLS were 

described elsewhere [19]. As blood samples were only 
collected in waves 1 and 3 [20], we utilized 3 waves data 
to establish a temporal sequence between obesity and 
baseline characteristics (wave 1, 2011), biological age 
acceleration (wave 3, 2015), and incident CVD (wave 
5, 2020), leaving a final sample of 4458 participants. To 
examine reproducibility of the conclusions, we repeated 
main analyses in UKB and part results in HEHEC. The 
UKB and HEHEC [21, 22] were both analyzed using dif-
ferent study designs and formed two cohorts each, with 
UKB1 (n = 166277) and HEHEC1(n = 21776) having 
large sample sizes, and UKB2 (n = 7263) and HEHEC2 
(n = 9701) having rigorous longitudinal data (see Fig.  1 
and Supplementary Material for details).

All participants or their legal representatives provided 
written informed consent to participate in the base-
line and follow-up surveys. CHARLS was approved by 
the Biomedical Ethics Committee of Peking University 
(IRB00001052-11015), and UKB was approved by the 
Northwest Multicenter Research Ethics Committee on 
May 10, 2016 (reference: 16/NW/0274). HEHEC was 
approved by Ethics Committee of West China Fourth 
Hospital and West China School of Public Health, Sich-
uan University (approval number: Gwll2024175), and all 
participants provided written informed consent [21–23].

Assessment of obesity
Obesity indices (BMI, WC, WtHR, BRI for body shape; 
CVAI, LAP for visceral fat accumulation; TyG, TyG-
BMI, TyG-WC, TyG-WtHR for metabolic function) were 
used to measure obesity across different dimensions [24, 
25], with calculation details provided in Supplementary 
Material. These obesity indices were standardized and 

Fig. 1  Flow diagram for participants of CHARLS, UKB1 and HEHEC1. A, B, and C were flow diagrams for CHARLS, UKB1, and HEHEC1, respectively.
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also categorized into 3 groups based on tertiles, with the 
cut-off values provided in Supplementary Material Table 
S1 for CHARLS. However, according to the Chinese 
standard, BMI was categorized as underweight and nor-
mal (BMI < 24 kg/m2), overweight (24 ≤ BMI ≤ 28 kg/m2), 
and obese (≥ 28  kg/m2). WC was categorized as normal 
(< 85  cm for males and < 80  cm for females), abdominal 
obesity pre-phase (85–90  cm for males and 80–85  cm 
for females), and abdominal obesity (≥ 90  cm for males 
and ≥ 85 cm for females) [26].

Development of KDM-BA and KDM-BAacc
The classical KDM was used to construct BA, a validated 
approach in both Chinese and UK populations, demon-
strating effective prediction of age-related health out-
comes [27]. Refer to previous studies [28], we trained 
KDM-BA in the China Health and Nutrition Survey 
(CHNS) cohort aged 20–79 years, using 12 selected can-
didate biomarkers, including total cholesterol (TC), tri-
glycerides (TG), albumin, glycated hemoglobin (HBA1C), 
urea, creatinine, high-sensitivity C-reactive protein (hs-
CRP), red blood cell count (RBC), platelet count (PLT), 
ferritin, transferrin, and systolic blood pressure (SBP), 
which represent various domains of physical function. 
Then, projecting the trained KDM-BA onto CHARLS, 
UKB and HEHEC. As 4 biomarkers (albumin, RBC, fer-
ritin, and transferrin) were unavailable in CHARLS, 
KDM-BA was computed using the remaining 8 biomark-
ers. Similarly, ferritin and transferrin were unavailable 
in UKB, and 6 biomarkers (HBA1C, urea, hs-CRP, RBC, 
ferritin, transferrin) were unavailable in the HEHEC, 
so KDM-BA was computed using the remaining bio-
markers. The KDM-BA measurements were conducted 
at wave 3 (2015) in CHARLS, wave 1 (2006–2010) in 
UKB1 and wave 2 (2012–2013) in UKB2, the first and 
last year of follow-up during 2017–2024 in HEHEC1 and 
HEHEC2, respectively. Participants’ CAs were recorded 
concurrently with BA assessments. Correlation(r), 
mean absolute error (MAE) and root mean square error 
(RMSE) were used to evaluate KDM-BA accuracy [29].

To adjust for the effect of CA, KDM-BAacc was calcu-
lated as the residual from a linear regression of KDM-BA 
on CA. The final KDM-BAacc was expressed in years to 
measure biological age acceleration, with a positive value 
indicating a clinical profile typical of an older individual, 
while a negative score reflected a younger clinical profile 
characteristic. KDM-BA calculation was performed by 
“BioAge” R package [30].

Assessment of incident CVD
The primary outcome for this study was incident CVD. 
Subjects with heart disease or stroke were defined as 
suffering from incident CVD. Similar to previous stud-
ies, incident CVD in CHARLS was identified based on 

responses to the questions per wave: “Have you been 
diagnosed with a heart attack, angina, coronary heart 
disease, heart failure, or other heart issues?”, “Has a doc-
tor diagnosed you with a stroke?”, or “Are you currently 
receiving any of the following treatments (Chinese tra-
ditional medicine/Western medicine/Other treatments/
None of the above) for stroke, heart disease, or their com-
plications?” [4, 23, 31, 32]. The diagnosis of CVD in the 
UKB and HEHEC followed the standard of the American 
Heart Association, with CVD encompassing ischemic 
heart disease (IHD) (ICD-10: I20–I25) and stroke (ICD-
10: I60, I61, I63, I64, I69.0, I69.1, I69.3, and I69.4) [33]. 
UKB's CVD diagnosis came from the 2022 primary care, 
hospital admissions, death records, and self-reported 
medical conditions, and provided each participant with 
the date of the first occurrence in any source [34]. HEH-
EC’s CVD diagnosis was confirmed by linking the 2023 
health examination data to the Medical Record Home 
Disease Diagnosis Information System managed by the 
Sichuan Health Information Center.

Assessment of covariates
Based on previous studies, the covariates included in this 
study were age, sex (male or female), education level (illit-
eracy, elementary school or below, middle school, or high 
school or above), marital status (married or others), resi-
dential area (rural or urban), smoking pack years, alcohol 
use (non-drinker, rare drinker, regular drinker), physical 
activity (yes or no), hypertension (yes or no), diabetes 
(yes or no), and hyperlipidemia (yes or no) in baseline 
[35, 36], and see Supplementary Material for details.

Statistical analysis
Descriptive statistics reported the baseline characteris-
tics of participants, with continuous variables reported 
as median (interquartile range, IQR) and categorical vari-
ables summarized as count (percentage). Differences in 
characteristics by incident CVD were tested using Wil-
coxon rank test for continuous variables and Chi-square 
test for categorical variables. The missing proportion for 
covariates was below 20%. We have identified the miss-
ing mechanism [37] before mode or median method was 
chosen to deal with missing data. Furthermore, we also 
repeated the primary analysis under different missing 
data handling methods to ensure results robustness (see 
sensitivity analyses).

To evaluate the potential mediating role of biological 
age acceleration (measured by KDM-BAacc) in the asso-
ciation with obesity with incident CVD, we employed 
a longitudinal design that enabled the determination 
of temporal ordering. As shown in Fig.  2, we consid-
ered three pathways (a: obesity → biological age accel-
eration; b: biological age acceleration → incident CVD; 
c: obesity → incident CVD). For path a, multiple linear 
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regression models were used to investigate the associa-
tions of obesity with biological age acceleration. The 
coefficient (β) and 95% confidence interval (95%CI) per 
standard deviation (SD) increase in obesity indices were 
reported. For path b and c, logistic regression models 
were performed to investigate the associations of obesity 
and biological age acceleration with incident CVD. The 
odds ratio (OR) and 95%CI were reported. Trend test was 
used to investigate the linear trend of obesity with biolog-
ical age acceleration and incident CVD. Causal mediation 
analyses were conducted to assess whether biological age 
acceleration mediated the relationship between obesity 
and incident CVD, and to estimate the mediation pro-
portions [38, 39]. The total causal effect (TCE) of obesity 
on incident CVD was partitioned into the natural direct 
effect (NDE), which represents the impact of obesity 
through mechanisms other than biological age accelera-
tion, and the natural indirect effect (NIE), which reflects 
the effect of obesity via biological age acceleration. The 
following assumptions were made: there were no unmea-
sured confounders for paths a, b, and c. Additionally, no 
confounders of path b were influenced by obesity, given 
the other confounders [40]. The above analysis was pri-
marily conducted in CHARLS, while the validation anal-
ysis was performed with data from UKB and HEHEC. 
However, due to insufficient follow-up time, incident 
CVD data could not be obtained, and only path a was 
validated in HEHEC.

Furthermore, to enhance the validity of our main find-
ings, sensitivity analyses were conducted in CHARLS 
with regards to nine aspects: (1) Mitigating reverse cau-
sation. We excluded individuals who developed CVD 
within 1 year of biological age acceleration follow-up to 
mitigate potential reverse causation [41]; (2) Reducing 
temporal bias. We excluded individuals with biological 
age acceleration at baseline to mitigate potential tempo-
ral bias between obesity and biological aging; (3) Quar-
tile-based categorization. We categorized obesity indices 
into four groups based on quartiles; (4) AHA-based BMI 
categorization. BMI was categorized according to the 

American Heart Association (AHA) criteria, includ-
ing underweight (< 18.5  kg/m2), normal weight (18.5–
24.9  kg/m2), overweight (25–29.9  kg/m2), and obese 
(≥ 30 kg/m2) [42]; (5) Confounder adjustment for physical 
activity. Physical activity was included as a confounder, 
and complete-case analysis was performed to address 
the missing of physical activity; (6) Medication-based 
confounder adjustment. We replaced the confounders of 
hypertension, diabetes, and dyslipidemia with a history 
of antihypertensive medication, diabetes medication, 
and dyslipidemia medication, respectively; (7) Validation 
using PhenoAgeAccel [43] in UKB. PhenoAgeAccel was 
calculated in UKB with concentrations of albumin, alka-
line phosphatase, creatinine, glucose, C-reactive protein, 
lymphocyte percentage, mean cell volume, red blood cell 
distribution width, white blood cell count and CA; (8) 
Assessment of unmeasured confounding. We calculated 
the E-value to evaluate the potential impact of unmea-
sured confounding. The E-value represents the mini-
mum strength of association an unmeasured confounder 
would need to have with both treatment and outcome, 
conditional on measured covariates, to fully explain the 
observed treatment-outcome association [44]; (9) Miss-
ing data handling. We repeated the primary analysis 
using both multiple imputation and complete case analy-
sis to assess the robustness of the results under different 
missing data handling methods.

Finally, subgroup analyses based on sex and baseline 
age were conducted to explore potential effect hetero-
geneity. All statistical analyses were conducted using R 
4.3.3, with “medflex” package [45] employed for causal 
mediation analyses. A two-tailed P < 0.05 was considered 
statistically significant in all tests.

Results
Population characteristics
Table 1 summarized the characteristics of CHARLS 
participants stratified by incident CVD. Characteristic 
of UKB and HEHEC were presented in Supplementary 
Material Table S2. The characteristics and performance 

Fig. 2  Causal diagram illustrating postulated causal relationships between obesity, biological age acceleration and incident CVD. In CHARLS, Baseline, 
Follow-up 1, and Follow-up 2 referred to assessments taken in 2011, 2015, and 2020, respectively.
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of KDM-BA were shown in the Supplementary Mate-
rial, and the KDM-BA developed in this study demon-
strated good accuracy in r, MAE and RMSE. Among the 
4458 participants in CHARLS, the median follow-up 
period was 9.00  years, the median baseline age was 58 
(52, 65) years old, the median KDM-BAacc was − 0.70 
(− 1.08, − 0.24) years, and 52.76% were female. A total of 

579 (12.99%) participants developed CVD, while 3879 
(87.01%) did not develop CVD.

Comparisons of the CVD group with the non-CVD 
group showed significant differences in age, sex, educa-
tion level, hypertension, diabetes, hyperlipidemia, 10 
obesity indices, KDM-BA and KDM-BAacc (all P < 0.01). 
Compared to the non-CVD group, individuals with 
CVD were older, more likely female, had lower educa-
tional attainment and physical activity, and exhibited 
significantly higher prevalence of hypertension, diabe-
tes, dyslipidemia, as well as elevated obesity indices and 
KDM-BA values.

Associations between obesity and KDM-BAacc
As shown in Table 2, per SD rose in the 10 obesity indi-
ces were all positively associated with KDM-BAacc in 
CHARLS. The effects of TyG-WC and TyG-WtHR on 
KDM-BAacc were the greatest among all indicators, 
both estimated at 0.12 (0.10–0.14) per SD. Consistently, 
when considered as ordinal variables, the KDM-BAacc 
increased significantly with the elevated tertile of obesity 
indices (all Ptrend < 0.01). Compared with the first tertile, 
the other two tertiles of obesity indices were strongly 
associated with KDM-BAacc (all P < 0.01).

Models adjusted for age, sex, education level, marital 
status, residential area, smoking pack years, alcohol use, 
hypertension, diabetes, and hyperlipidemia.

Table 1  Characteristic analysis in CHARLS
Characteristics Non-CVD 

(N = 3879)
CVD (N = 579) P

Baseline age, median 
(IQR), years

58(51,64) 60(54,65)  < 0.01

Follow-up 1 age, median 
(IQR), years

62(55,68) 64(58,69)  < 0.01

Female, n(%) 2016(51.97) 336(58.03)  < 0.01
Urban, n(%) 1236(31.86) 176(30.40) 0.48
Education level, n(%)  < 0.01
 Illiteracy 1055(27.20) 177(30.57)
 Elementary school or 
below

1641 (42.30) 263 (45.42)

 Middle school 842 (21.71) 92 (15.89)
 High school or above 341 (8.79) 47 (8.12)
Married, n(%) 392 (10.11) 61 (10.54) 0.75
Smoking pack years, 
median(IQR)

0.00 (0.00,7.00) 0.00 (0.00, 0.00) 0.14

Alcohol use, n(%) 0.92
 Non-drinker 2250 (58.00) 338 (58.38)
 Rare drinker 388 (10.00) 60 (10.36)
 Regular drinker 1241 (31.99) 181 (31.26)
Physical activity, n(%) 987 (59.07) 128 (51.20) 0.02
Hypertension, n(%) 1284 (33.10) 272 (46.98)  < 0.01
Diabetes, n(%) 484 (12.48) 97 (16.75)  < 0.01
Dyslipidemia, n(%) 1731 (44.62) 301 (51.99)  < 0.01
BMI, median (IQR) 22.96 (20.78, 

25.35)
23.86 (21.68, 
26.59)

 < 0.01

WC, median (IQR) 84.00 (77.60, 
90.90)

87.50 (80.60, 
94.10)

 < 0.01

WtHR, median (IQR) 0.53 (0.49, 0.58) 0.55 (0.51, 0.60)  < 0.01
BRI, median (IQR) 3.93 (3.15, 4.94) 4.38 (3.50, 5.43)  < 0.01
CVAI, median (IQR) 89.85 (65.13, 

117.66)
104.03 (78.51, 
134.93)

 < 0.01

LAP, median (IQR) 25.51 (13.96, 
45.19)

32.72 (19.14, 
55.89)

 < 0.01

TyG, median (IQR) 8.56 (8.20, 9.00) 8.67 (8.31, 9.14)  < 0.01
TyG-BMI, median (IQR) 196.89 (174.24, 

223.75)
208.74 (184.26, 
238.68)

 < 0.01

TyG-WC, median (IQR) 718.68 (647.88, 
804.03)

760.08 (677.28, 
849.33)

 < 0.01

TyG-WtHR, median (IQR) 4.57 (4.08, 5.11) 4.82 (4.30, 5.42)  < 0.01
KDM-BA, median 
(IQR),years

61.18 (54.79, 
67.66)

63.44 (57.74, 
69.00)

 < 0.01

KDM-BAacc, median 
(IQR),years

− 0.72 (− 1.10, 
− 0.27)

− 0.53 (− 0.90, 
− 0.04)

 < 0.01

Bold text in the table represented statistically significant results

IQR interquartile range. Follow-up 1 age referred to the age at the time point 
used for calculating KDM-BA. 

Table 2  Associations between obesity and KDM-BAacc in 
CHARLS
Obesity Association, β(95%CI) Ptrend

Per SD Ter-
tile 
1

Tertile 2 Tertile 3

BMI 0.07 (0.05–0.08) Ref 0.11 
(0.07–0.16)

0.17 
(0.10–0.23)

 < 0.01

WC 0.08 (0.07–0.10) Ref 0.12 
(0.07–0.17)

0.19 
(0.15–0.23)

 < 0.01

WtHR 0.08 (0.06–0.10) Ref 0.10 
(0.05–0.14)

0.21 
(0.16–0.25)

 < 0.01

BRI 0.08 (0.06–0.10) Ref 0.10 
(0.05–0.14)

0.21 
(0.16–0.25)

 < 0.01

CVAI 0.09 (0.07–0.11) Ref 0.10 
(0.06–0.14)

0.21 
(0.16–0.26)

 < 0.01

LAP 0.07 (0.05–0.09) Ref 0.11 
(0.06–0.15)

0.22 
(0.17–0.28)

 < 0.01

TyG 0.10 (0.08–0.12) Ref 0.07 
(0.03–0.11)

0.17 
(0.11–0.22)

 < 0.01

TyG-BMI 0.10 (0.08–0.12) Ref 0.13 
(0.09–0.17)

0.24 
(0.19–0.29)

 < 0.01

TyG-WC 0.12 (0.10–0.14) Ref 0.12 
(0.07–0.16)

0.25 
(0.20–0.30)

 < 0.01

TyG-WtHR 0.12 (0.10–0.14) Ref 0.10 
(0.06–0.15)

0.23 
(0.18–0.28)

 < 0.01

Bold text in the table represents statistically significant results
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Associations between KDM-BAacc and incident CVD
KDM-BAacc was positively associated with incident 
CVD in CHARLS. For each 1-year increase in KDM-
BAacc, the risk of incident stroke, heart disease and CVD 
increased by 68% (OR 1.68, 95% CI 1.35–2.09), 35% (OR 
1.35, 95% CI 1.15–1.59), and 44% (OR 1.44, 95% CI 1.25–
1.65), respectively (Table 3).

Associations between obesity and incident CVD
Obesity indices were significantly correlated with inci-
dent CVD, and 1 SD increase in BMI (OR 1.22, 95% CI 
1.12–1.33), WC (OR 1.30, 95% CI 1.18–1.42), WtHR (OR 
1.25, 95% CI 1.14–1.38), BRI (OR 1.25, 95% CI 1.14–1.37), 
CVAI (OR 1.30, 95% CI 1.17–1.44), LAP (OR 1.10, 95% CI 
1.01–1.20), TyG (OR 1.11, 95% CI 1.00–1.24), TyG-BMI 
(OR 1.26, 95% CI 1.14–1.38), TyG-WC (OR 1.32, 95% CI 
1.19–1.47), TyG-WtHR (OR 1.29, 95% CI 1.16–1.44) lev-
els were significantly associated with a greater incident 
CVD. Except for TyG, the tertile 3 of obesity indices had 
a stronger association with incident CVD than the other 
tertiles (Ptrend < 0.01).

The relationship between obesity and stroke or heart 
disease followed a similar pattern. However, the posi-
tive association between obesity and stroke was stron-
ger. TyG-WtHR showed the largest effect (OR 1.48, 95% 
CI 1.25–1.74), followed by CVAI (OR 1.42, 95% CI 1.21–
1.66) and TyG-WC (OR 1.41, 95% CI 1.20–1.66). In con-
trast, the effect on heart disease was slightly attenuated. 
LAP, TyG, and heart disease have yet to show a statisti-
cally significant association (Table 4).

Causal mediation analysis of KDM-BAacc on associations of 
obesity with incident CVD
In the causal mediation analysis (Table  5), KDM-BAacc 
accounted for 10.08%, 10.03%, 11.58%, 10.96%, 11.09%, 
25.46%, 13.01%, 13.30%, 15.09% of the associations of 
BMI, WC, WtHR, BRI, CVAI, LAP, TyG-BMI, TyG-WC, 
TyG-WtHR with incident CVD, respectively. The pro-
portions mediated through KDM-BAacc were 23.19% 
and 23.13% for the associations between LAP, TyG, and 
stroke, respectively, but no mediation effect was found 
for heart disease. KDM-BAacc mediated the associations 
between BMI, WC, WtHR, BRI, CVAI, TyG-BMI, TyG-
WC, TyG-WtHR, with CVD, stroke, and heart disease. 
Among them, the mediation proportion of KDM-BAacc 

was largest in the relationships between TyG-WtHR with 
CVD, stroke, and heart disease, accounting for 15.09%, 
14.02%, and 21.05%, respectively.

Validation analysis
UKB was used to validate the associations between obe-
sity and incident CVD, as well as the mediating effect of 
KDM-BAacc, with results shown in Fig. 3. In UKB1, the 
findings were similar to CHARLS. However, the associa-
tions between LAP, TyG and heart disease were statisti-
cally significant, whereas no significant association with 
stroke was observed. KDM-BAacc mediated the relation-
ships between WC, WtHR, BRI, CVAI, TyG-WC, TyG-
WtHR, with CVD, stroke, and heart disease. The results 
for UKB2 were presented in Supplementary Material 
Figure S3, where KDM-BAacc mediated the association 
between obesity and incident CVD, but with an attenu-
ated effect.

HEHEC was used to validate the associations between 
obesity and KDM-BAacc, with results presented in 
Table  6. In HEHEC1, the findings were consistent with 
those from CHARLS. Per SD increase in the 10 obesity 
indices showed positive associations with KDM-BAacc in 
HEHEC1. The results for HEHEC2 were shown in Sup-
plementary Material Table S4, where obesity remained 
associated with KDM-BAacc, though the effect was 
attenuated.

Sensitivity analysis
The sensitivity analysis was carried out from nine 
aspects, and the analysis results of each aspect were sum-
marized below.

(1)	Mitigating reverse causation. Consistent results were 
observed after excluding individuals who developed 
CVD within 1 year of biological age acceleration 
follow-up (Supplementary Material Figure S4).

(2)	Reducing temporal bias. Excluding individuals with 
baseline biological age acceleration also yielded 
consistent results, with KDM-BAacc still mediating 
the association between obesity and incident CVD 
(Supplementary Material Figure S5).

(3)	Quartile-based categorization. The results remained 
consistent when obesity indices were further 
categorized into quartiles (Supplementary Material 
Tables S5–S6).

(4)	AHA-based BMI categorization. Similarly, 
analyses based on BMI categorization according 
to the American Heart Association (AHA) criteria 
produced consistent findings (Supplementary 
Material Tables S7–S8).

(5)	Confounder adjustment for physical activity. 
Additional adjustment for physical activity as a 

Table 3  Associations between KDM-BAacc and CVD in CHARLS
Outcome OR (95% CI) P
Stroke 1.68 (1.35–2.09) < 0.01
Heart disease 1.35 (1.15–1.59) < 0.01
CVD 1.44 (1.25–1.65) < 0.01
Bold text in the table represents statistically significant results

Models adjusted for age, sex, education level, marital status, residential area, 
smoking pack years, alcohol use, hypertension, diabetes, and hyperlipidemia. 
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confounder did not alter the observed associations 
(Supplementary Material Tables S9–S12).

(6)	Medication-based confounder adjustment. Replacing 
hypertension, diabetes, and dyslipidemia with history 
of antihypertensive medication, diabetes medication, 
and dyslipidemia medication, respectively, yielded 
similarly robust results (Supplementary Material 
Tables S13–S16).

(7)	Validation using PhenoAgeAccel in UKB. In the 
UKB, analyses using PhenoAgeAccel to measure 
biological age acceleration demonstrated consistent 
associations with larger effects (Supplementary 
Material Figures S6–S7).

(8)	Assessment of unmeasured confounding. E-value 
results indicated that only unmeasured confounding 
with an OR exceeding the corresponding E-value 

could alter the observed associations among 
obesity indices, KDM-BAacc, and incident CVD. 
However, given the extensive adjustment for 
measured confounders, the presence of such 
influential unmeasured confounding was unlikely 
(Supplementary Material Table S17).

(9)	Missing data handling. Results of the missing data 
mechanism test were provided in the Supplementary 
Material. Both the multiple imputation and 
complete case analyses yielded consistent results 
(Supplementary Material Tables S18–S25).

Subgroup analyses
Subgroup analyses showed that KDM-BAacc mediated 
body shape indices were more significantly associated 
with incident CVD in males. In contrast, KDM-BAacc 

Table 4  Associations between obesity and incident CVD in CHARLS
Outcome Obesity Association, OR (95% CICI)

Per SD Tertile 1 Tertile 2 Tertile 3 Ptrend

Stroke
BMI 1.27 (1.12–1.43) Ref 1.30 (0.93–1.82) 1.78 (1.12–2.76) 0.01
WC 1.32 (1.13–1.53) Ref 1.20 (0.74–1.91) 1.99 (1.39–2.88)  < 0.01
WtHR 1.36 (1.17—1.58) Ref 1.62 (1.07–2.48) 2.36 (1.56–3.63)  < 0.01
BRI 1.32 (1.15–1.52) Ref 1.62 (1.07–2.48) 2.36 (1.56–3.63)  < 0.01
CVAI 1.42 (1.21–1.66) Ref 1.36 (0.89–2.09) 2.00 (1.31–3.08)  < 0.01
LAP 1.14 (1.01–1.28) Ref 2.01 (1.32–3.08) 2.29 (1.43–3.70)  < 0.01
TyG 1.25 (1.06–1.48) Ref 1.15 (0.78–1.69) 1.25 (0.81–1.95) 0.33
TyG-BMI 1.35 (1.18–1.55) Ref 2.14 (1.42–3.29) 2.48 (1.59–3.94)  < 0.01
TyG-WC 1.41 (1.20–1.66) Ref 1.65 (1.08–2.54) 2.50 (1.62–3.91)  < 0.01
TyG-WtHR 1.48 (1.25–1.74) Ref 1.73 (1.15–2.65) 2.10 (1.34–3.32)  < 0.01

Heart disease
BMI 1.17 (1.06–1.29) Ref 1.28 (1.01–1.62) 1.61 (1.16–2.21)  < 0.01
WC 1.23 (1.10–1.37) Ref 1.39 (1.03–1.87) 1.48 (1.15–1.91)  < 0.01
WtHR 1.18 (1.06–1.32) Ref 1.08 (0.83–1.42) 1.23 (0.93–1.63) 0.14
BRI 1.19 (1.07–1.32) Ref 1.08 (0.83–1.42) 1.23 (0.93–1.63) 0.14
CVAI 1.21 (1.08–1.36) Ref 1.25 (0.95–1.65) 1.50 (1.12–2.02) 0.01
LAP 1.01 (0.90–1.12) Ref 1.37 (1.05–1.81) 1.39 (1.01–1.91) 0.05
TyG 1.02 (0.90–1.16) Ref 1.16 (0.89–1.50) 1.01 (0.74–1.39) 0.86
TyG-BMI 1.17 (1.05–1.30) Ref 1.19 (0.91–1.56) 1.42 (1.06–1.91) 0.02
TyG-WC 1.21 (1.07–1.36) Ref 1.27 (0.97–1.67) 1.54 (1.15–2.07)  < 0.01
TyG-WtHR 1.17 (1.04–1.33) Ref 1.18 (0.89–1.56) 1.49 (1.11–2.02) 0.01

CVD
BMI 1.22 (1.12–1.33) Ref 1.31 (1.06–1.61) 1.75 (1.31–2.31)  < 0.01
WC 1.30 (1.18–1.42) Ref 1.38 (1.05–1.80) 1.76 (1.41–2.20)  < 0.01
WtHR 1.25 (1.14–1.38) Ref 1.23 (0.97–1.56) 1.56 (1.22–1.99)  < 0.01
BRI 1.25 (1.14–1.37) Ref 1.23 (0.97–1.56) 1.56 (1.22–1.99)  < 0.01
CVAI 1.30 (1.17–1.44) Ref 1.25 (0.98–1.60) 1.73 (1.34–2.24)  < 0.01
LAP 1.10 (1.01–1.20) Ref 1.54 (1.21–1.97) 1.70 (1.29–2.25)  < 0.01
TyG 1.11 (1.00–1.24) Ref 1.17 (0.93–1.47) 1.12 (0.85–1.47) 0.39
TyG-BMI 1.26 (1.14–1.38) Ref 1.49 (1.18–1.90) 1.79 (1.38–2.33)  < 0.01
TyG-WC 1.32 (1.19–1.47) Ref 1.38 (1.08–1.76) 1.93 (1.49–2.50)  < 0.01
TyG-WtHR 1.29 (1.16–1.44) Ref 1.35 (1.06–1.72) 1.71 (1.31–2.23)  < 0.01

Bold text in the table represents statistically significant results

Models adjusted for age, sex, education level, marital status, residential area, smoking pack years, alcohol use, hypertension, diabetes, and hyperlipidemia. 
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mediated visceral fat accumulation and metabolic func-
tion indices were more significantly associated with 
incident CVD in females, especially for stroke. In the 
individuals aged ≥ 65 in baseline, although most obesity 
indices were associated with incident CVD, no mediating 
effect by KDM-BAacc was found. The mediating effect 
of KDM-BAacc was significant in the population aged 
45–65 years (Supplementary Material Figures S8–S10).

Discussion
The findings of this prospective international multicohort 
study first suggested that biological age acceleration par-
tially mediated the associations of obesity across multiple 
dimensions and incident CVD. However, this mediating 
effect was only observed in individuals aged 45–65 years. 
Furthermore, we found that the mechanisms underlying 

the associations between obesity, biological age accel-
eration, and incident CVD differed slightly between sex. 
Biological age acceleration more strongly mediated the 
associations between body shape indices and incident 
CVD in males, whereas in females, visceral fat accumu-
lation and metabolic function dimensions played a more 
prominent role in the development of biological age 
acceleration and incident CVD.

Although only a few studies have explored the medi-
ating role of biological age acceleration in the relation-
ship between obesity and incident CVD, our findings 
aligned with those recent studies. For instance, Li et al. 
found that biological age acceleration partially mediated 
the association between unhealthy lifestyles and incident 
CVD [46]. However, their study focused on a composite 
unhealthy lifestyle score derived from 5 lifestyle factors, 

Table 5  Causal mediation analysis of KDM-BAacc on associations of obesity with incident CVD
Outcome Obesity OR (95% CI), per SD Mediation proportion (%)

TCE NDE NIE
Stroke

BMI 1.28 (1.16–1.42) 1.25 (1.12–1.39) 1.03 (1.01–1.05) 11.11
WC 1.32 (1.15–1.51) 1.27 (1.1–1.46) 1.04 (1.02–1.06) 14.18
WtHR 1.37 (1.19–1.57) 1.32 (1.14–1.52) 1.04 (1.01–1.06) 11.99
BRI 1.33 (1.18–1.49) 1.28 (1.14–1.45) 1.03 (1.01–1.06) 11.86
CVAI 1.43 (1.22–1.66) 1.37 (1.17–1.60) 1.04 (1.02–1.07) 11.77
LAP 1.15 (1.04–1.28) 1.11 (1.00–1.24) 1.03 (1.01–1.05) 23.19
TyG 1.25 (1.05–1.49) 1.19 (1.00–1.42) 1.05 (1.02–1.08) 23.13
TyG-BMI 1.37 (1.22–1.55) 1.32 (1.16–1.49) 1.04 (1.02–1.07) 13.33
TyG-WC 1.41 (1.21–1.65) 1.34 (1.14–1.57) 1.06 (1.02–1.09) 16.17
TyG-WtHR 1.48 (1.26–1.74) 1.40 (1.18–1.66) 1.06 (1.02–1.09) 14.02

Heart disease
BMI 1.17 (1.07–1.29) 1.15 (1.05–1.27) 1.02 (1.00–1.03) 10.79
WC 1.23 (1.10–1.37) 1.20 (1.07–1.35) 1.02 (1.01–1.04) 10.72
WtHR 1.19 (1.06–1.33) 1.16 (1.03–1.30) 1.02 (1.01–1.04) 13.03
BRI 1.19 (1.07–1.32) 1.17 (1.05–1.30) 1.02 (1.01–1.04) 11.77
CVAI 1.21 (1.08–1.37) 1.18 (1.05–1.34) 1.03 (1.01–1.04) 13.05
LAP 1.01 (0.92–1.12) 0.99 (0.89–1.10) 1.02 (1.01–1.04) –
TyG 1.02 (0.89–1.16) 0.99 (0.86–1.12) 1.03 (1.01–1.05) –
TyG-BMI 1.18 (1.06–1.31) 1.15 (1.03–1.28) 1.03 (1.01–1.04) 15.91
TyG-WC 1.21 (1.08–1.36) 1.17 (1.04–1.32) 1.03 (1.01–1.06) 17.14
TyG-WtHR 1.17 (1.04–1.33) 1.13 (1.00–1.29) 1.03 (1.01–1.06) 21.05

CVD
BMI 1.22 (1.13–1.33) 1.20 (1.10–1.30) 1.02 (1.01–1.03) 10.08
WC 1.30 (1.18–1.43) 1.26 (1.15–1.39) 1.03 (1.01–1.04) 10.03
WtHR 1.25 (1.14–1.38) 1.22 (1.11–1.35) 1.03 (1.01–1.04) 11.58
BRI 1.25 (1.14–1.37) 1.22 (1.11–1.34) 1.02 (1.01–1.04) 10.96
CVAI 1.30 (1.17–1.44) 1.26 (1.14–1.40) 1.03 (1.01–1.05) 11.09
LAP 1.10 (1.02–1.19) 1.07 (0.99–1.16) 1.02 (1.01–1.04) 25.46
TyG 1.11 (1.00–1.24) 1.07 (0.96–1.20) 1.04 (1.02–1.06) 34.66
TyG-BMI 1.26 (1.15–1.38) 1.22 (1.12–1.34) 1.03 (1.01–1.05) 13.01
TyG-WC 1.32 (1.19–1.47) 1.28 (1.15–1.42) 1.04 (1.02–1.06) 13.30
TyG-WtHR 1.29 (1.16–1.44) 1.24 (1.11–1.38) 1.04 (1.02–1.06) 15.09

“–” indicated suppression effect and was not reported. Bold indicated statistically significant proportion mediated. Models adjusted for age, sex, education level, 
marital status, residential area, smoking pack years, alcohol use, hypertension, diabetes, and hyperlipidemia. 
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including BMI, rather than focusing on obesity. Simi-
larly, Sun et al. identified epigenetic age acceleration as 
a potential molecular link between childhood BMI and 
subclinical atherosclerosis, a condition closely related to 
CVD [13]. Notably, our sensitivity analysis using Pheno-
Age in the UKB cohort further validated these findings, 
underscoring the robustness of the observed mediating 
role of biological age acceleration. Building on these stud-
ies, our study offered new insights into the temporal links 
between obesity, biological age acceleration, and incident 
CVD by incorporating multidimensional obesity indices 
and temporal sequence designs, while providing evidence 
from multiple cohorts to support disease prevention and 
interventions.

Previous human and animal studies have highlighted 
chronic inflammation as a central link between obesity, 
biological age acceleration, and incident CVD. Inflam-
maging, a persistent low-grade systemic inflammation 
[47], promotes lipid and fibrous component deposition 
in arterial walls, forming plaques whose instability and 

rupture can trigger thrombosis, leading to severe events 
such as myocardial infarction and stroke [48]. Obesity 
exacerbates inflammaging through the senescence-asso-
ciated secretory phenotype (SASP) [49], where senescent 
cells secrete pro-inflammatory cytokines and proteases, 
disrupting tissue homeostasis and biological age accel-
eration [50]. At the cellular level, shared features of obe-
sity and aging, including mitochondrial dysfunction, 
redox imbalance, and impaired autophagy, drive cellular 
senescence and reinforce inflammation [10]. This pro-
inflammatory environment fosters a vicious cycle among 
obesity, insulin resistance, and age-related cardiovascular 
diseases by promoting immune cell infiltration into insu-
lin-responsive tissues, increasing oxidative stress, and 
reducing insulin receptor expression [51]. Consequently, 
elevated glucose, lipids, free fatty acids, and reactive oxy-
gen species (ROS) contribute to metabolic syndrome 
and endothelial dysfunction, accelerating cardiovascular 
aging and disease progression [11].

Fig. 3  Associations between obesity, KDM-BAacc and incident CVD in UKB1. “-” indicated suppression effect and was not reported. Bold indicated statisti-
cally significant proportion mediated. Models adjusted for age, sex, education level, residential area, smoking pack years, physical activity, hypertension, 
diabetes, and hyperlipidemia.
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This study revealed that biological age acceleration par-
tially mediated the association between obesity and CVD 
in 45–65 years old individuals, consistent with previous 
studies [52]. However, in individuals aged 65  years and 
above, this mediating effect was no longer significant. 
This may indicate that middle age and early older age rep-
resent a critical period where obesity promotes biological 
age acceleration, thereby increasing CVD risk. While in 
older adults, cumulative vascular damage and chronic 
pathological states dominate, prolonged exposure to car-
diovascular risk factors and inflammation shifts the pri-
mary CVD risk from biological age acceleration to these 
cumulative pathological changes [53, 54].

Commonly used BMI cannot distinguish the distribu-
tion of adipose tissue, such as subcutaneous and visceral 
fat [32], or detect metabolic abnormalities like insulin 
resistance [36]. These factors all play critical roles in the 
development of CVD [55]. To address these limitations, 
this study evaluated obesity across multiple dimensions, 
including body shape, visceral fat accumulation, and 
metabolic function, providing a more comprehensive 
exploration of the mechanisms linking obesity, biological 
age acceleration, and incident CVD. The results showed 
distinct sex-based mechanisms in incident CVD. Body 
shape was a stronger determinant in males, while visceral 
fat accumulation and metabolic dysfunction played a 
more pronounced role in females, particularly in driving 

biological age acceleration and stroke. These differences 
can be explained by that males tend to accumulate fat 
in the abdominal region, reflecting a predisposition to 
abdominal obesity [56]. In contrast, hormonal changes in 
women, especially after menopause [57], drive visceral fat 
deposition and metabolic dysfunction, exacerbating CVD 
risk through mechanisms such as altered insulin kinetics, 
glucose and lipid metabolism, and myocardial substrate 
utilization [58, 59]. Furthermore, this study confirmed 
that combining TyG with obesity indices offers a better 
assessment of IR and CVD risk than using the TyG alone, 
particularly TyG-WtHR [60]. Controlling obesity through 
healthy lifestyle is expected to be an effective approach to 
mitigating biological age acceleration and reducing CVD 
incidence.

This study has several strengths. It is the first to investi-
gate the mediation pathway linking obesity, biological age 
acceleration, and its impact on incident CVD. The unique 
longitudinal design enhances the reliability of the find-
ings by capturing temporal relationships. By incorporat-
ing multiple obesity indices across different dimensions, 
this study provides a deeper understanding of the mecha-
nisms involved. Furthermore, the inclusion of multiple 
international prospective cohorts, along with large sam-
ples and rigorous study designs, ensures the generaliz-
ability and robustness of the results.

Several limitations of this study should be acknowl-
edged. First, the diagnosis of CVD in CHARLS was self-
reported based on the doctor’s diagnosis, which may 
introduce some bias. However, this method aligned with 
approaches used in many previous studies and is reason-
ably accurate. The results were further validated using 
electronic medical records in the UKB supporting reli-
ability. Second, although multiple confounders were 
adjusted for and E-values were calculated to assess the 
potential impact of unmeasured confounding, the possi-
bility of residual confounding cannot be completely elim-
inated. Third, due to data limitations, the constructed BA 
included only a few routine clinical biomarkers and the 
specific BA biomarkers varied slightly across the three 
study cohorts, which may affect the interpretability of 
biological age acceleration. Nevertheless, the KDM-BA 
applied in this study has been found to be associated with 
pro-inflammatory pathways and remained an impor-
tant factor in the development of obesity and CVD [15]. 
Future studies incorporating multi-omics data could pro-
vide a more comprehensive understanding of the under-
lying mechanisms [61]. Fourth, many participants were 
excluded due to the longitudinal design, which reduced 
the sample size. To address this, findings were validated 
across multiple cohorts with different samples, demon-
strating the robustness of the results. However, we also 
observed that cohorts with rigorous longitudinal designs 
tended to have a higher median age, thereby attenuating 

Table 6  Associations between obesity and KDM-BAacc in 
HEHEC1
Obesity Association, β (95% CI) Ptrend

Per SD Ter-
tile 
1

Tertile 2 Tertile 3

BMI 0.06 (0.05–0.06) Ref 0.08 
(0.07–0.10)

0.13 
(0.11–0.16)

 < 0.01

WC 0.05 (0.04–0.06) Ref 0.04 
(0.02–0.06)

0.09 
(0.07–0.10)

 < 0.01

WtHR 0.04 (0.03–0.05) Ref 0.05 
(0.03–0.07)

0.09 
(0.07–0.10)

 < 0.01

BRI 0.04 (0.03–0.05) Ref 0.06 
(0.04–0.08)

0.10 
(0.08–0.12)

 < 0.01

CVAI 0.05 (0.04–0.05) Ref 0.07 
(0.05–0.09)

0.10 
(0.07–0.12)

 < 0.01

LAP 0.09 (0.08–0.10) Ref 0.07 
(0.05–0.09)

0.10 
(0.08–0.13)

 < 0.01

TyG 0.09 (0.08–0.10) Ref 0.06 
(0.04–0.08)

0.09 
(0.07–0.12)

 < 0.01

TyG-BMI 0.08 (0.07–0.09) Ref 0.07 
(0.05–0.09)

0.15 
(0.13–0.17)

 < 0.01

TyG-WC 0.07 (0.06–0.08) Ref 0.08 
(0.06–0.10)

0.14 
(0.12–0.16)

 < 0.01

TyG-WtHR 0.07 (0.06–0.08) Ref 0.07 
(0.05–0.09)

0.13 
(0.11–0.15)

 < 0.01

Bold text in the table represents statistically significant results

Models adjusted for age, sex, education level, marital status, alcohol use, 
hypertension, diabetes, and hyperlipidemia.
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the effect, as explained previously. We suggest that cohort 
should enhance follow-up monitoring, particularly in 
middle-aged populations, to better study and intervene 
in aging-related effects during earlier life stages. Finally, 
prospective studies in more diverse populations are still 
needed to confirm the validity of these findings.

Conclusion
In conclusion, this study was the first to provide tem-
poral evidence that biological age acceleration partially 
mediates the relationship between obesity and incident 
CVD across multiple international cohorts. These find-
ings emphasized the importance of addressing biological 
aging processes in the population aged 45–65 years. The 
observed sex differences underscore the importance of 
developing sex-specific strategies. Integrating anti-aging 
strategies with obesity interventions could play a crucial 
role in reducing health inequalities and prevent CVD in 
later life.
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