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Abstract
Background Insulin resistance and central obesity are major risk factors for cardiometabolic diseases. The 
triglyceride-glucose index (TyG) and lipid accumulation product (LAP) are markers that independently predict 
cardiometabolic risk. However, their combined long-term trajectories and impact on cardiometabolic multimorbidity 
(CMM) development remain unclear.

Methods This cohort study utilized data from the Coronary Artery Risk Development in Young Adults (CARDIA) study, 
which tracked 3467 participants at baseline. Dual-trajectory of TyG and LAP were identified using a group-based 
dual-trajectory model. Cox proportional hazards models were employed to assess the relationships between dual-
trajectory groups and primary cardiometabolic outcomes, including first cardiometabolic disease (FCMD), CMM (two 
or more conditions such as type 2 diabetes, coronary heart disease, or stroke), and all-cause mortality. Multi-state 
models were performed to assess the associations of dual-trajectory with CMM development.

Results The study included 3467 participants with a mean age of 25.08 years (SD = 3.59). Of these, 43.4% (n = 1505) 
were male, and 53.2% (n = 1561) were White. Three distinct dual-trajectory groups were identified: low-increasing 
(61.5%), high-amplitude fluctuation (7.6%), and high-increasing (30.9%). After multivariate adjustment, compared with 
the low-increasing group, the high-amplitude fluctuation group exhibited significantly higher risks for FCMD (hazard 
ratio [HR] 1.38, 95% confidence interval [CI]: 1.08–1.77), CMM (HR 2.63, 95% CI 1.21–5.71), and all-cause mortality (HR 
2.16, 95% CI 1.30–3.56), as well as elevated risks for transitions from baseline to FCMD (HR 1.41, 95% CI 1.17–1.63), 
FCMD to CMM (HR 2.07, 95% CI 1.53–3.96), CMM to death (HR 2.87, 95% CI 1.19–7.62). The high-increasing group 
showed similar results.

Conclusions Elevated and fluctuating trajectories of TyG and LAP from early adulthood are associated with increased 
risks of CMM development in midlife.
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Introduction
Multimorbidity, characterized by an individual having at 
least two chronic metabolic conditions, has emerged as a 
critical global health challenge [1–3]. Among the different 
forms of multimorbidity, cardiometabolic multimorbidity 
(CMM), which involving the simultaneous combination 
of two or more cardiometabolic diseases (CMDs) such as 
stroke, type 2 diabetes (T2D), and coronary heart disease 
(CHD), is particularly worrisome [4]. A Canadian study 
reported that 22% of individuals with diabetes, 32.2% of 
those with heart disease, and 48.4% of stroke patients have 
one additional cardiometabolic condition [5]. Moreover, 
the coexistence of multiple CMDs significantly escalates 
mortality risk and markedly reduces life expectancy com-
pared to the presence of a single CMD [3, 6]. Therefore, 
early identification of potential risk factors contributing to 
CMM development is crucial.

Insulin resistance (IR) is a key risk factor linked to 
numerous cardiovascular and metabolic diseases, includ-
ing CHD, stroke, hypertension, atherosclerosis, T2D, and 
atrial fibrillation [4, 7]. Recently, the triglyceride-glucose 
index (TyG) has emerged as a reliable indicator of IR and 
its progression [8]. Numerous studies have validated the 
TyG’s utility in predicting stroke risk [9], the incidence 
of diabetes [10], cardiovascular disease (CVD) risk [11], 
and adverse cardiovascular outcomes [12, 13]. Moreover, 
obesity, particularly central obesity, is another known 
contributor to CMDs, with strong associations to pre-
mature mortality [14, 15]. Unlike BMI, which cannot 

distinguish between lean mass and fat mass, the lipid 
accumulation product (LAP) serves as a more precise 
indicator of visceral adiposity and metabolic risk [15, 16]. 
Empirical evidence further supports the utility of LAP in 
independently predicting conditions such as metabolic 
syndrome and CMDs, underscoring its value as a crucial 
metric for improving survival assessments in obese pop-
ulations [17, 18]. In addition, visceral fat not only directly 
increases the risk of CMDs but also induces lipotoxicity, 
chronic inflammation, and adipokine imbalance, exac-
erbating cardiometabolic risk [19, 20]. These pathways 
indicate that visceral fat can impact CMDs both as an 
independent factor and through its interaction with IR. 
Although TyG and LAP have been extensively studied 
as independent predictors of cardiometabolic diseases, 
their potential combined utility for assessing CMM risk 
remains underexplored. Thus, combining these markers 
will offers a more comprehensive assessment of cardio-
metabolic risk.

Furthermore, most existing studies have focused on 
older populations, often neglecting younger individuals. 
Nevertheless, metabolic changes during young adult-
hood have a major impact on future cardiometabolic 
outcomes, underscoring the importance of focusing on 
younger cohorts. Additionally, the dynamic nature of 
TyG and LAP over time suggests that static, single-point 
assessments may provide only limited insights. Trajec-
tory modeling, in contrast, allows for the examination 
of temporal changes, the identification of distinct risk 
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trajectories, and the facilitation of more precise, indi-
vidualized prevention and intervention strategies [21]. 
Finally, prior studies have predominantly examined the 
existence of one or two CMDs, thereby failing to fully 
address the complex interactions involved in the progres-
sion of CMM, which limits the comprehensive utility of 
TyG and LAP in assessing cardiometabolic disease risk.

In light of these gaps, this study aimed to utilize data 
from the Coronary Artery Risk Development in Young 
Adults (CARDIA) study to describe the longitudinal 
trajectory patterns of TyG and LAP levels during young 
adulthood, and to evaluate their combined effect on 
CMM development in middle age.

Methods
Study design and population
Between 1985 and 1986 (year 0), the CARDIA study 
recruited over 5115 participants aged 18 to 30 from urban 
areas in four U.S. cities: Minneapolis (Minnesota), Bir-
mingham (Alabama), Oakland (California), and Chicago 
(Illinois). As a prospective, multi-center study, CARDIA 
was established to track CVD risk progression and con-
tributing factors from young adulthood to midlife. Data 
have been collected over nine follow-up intervals, start-
ing with the initial baseline assessment and continuing 
with further exams at 2, 5, 7, 10, 15, 20, 25, and 30 years. 
Detailed methodology and examination procedures are 
documented in previously published reports [22].

For this study, participants with prevalent diabetes, 
stroke or CHD (n = 356) at baseline, missing baseline 
waist circumference (WC), fast plasma glucose (FPG) 
and TG values (n = 121), having fewer than three valid 
follow-up observations for WC, FPG, and TG (n = 831) 
and missing other covariates (n = 168) were excluded. We 
also excluded individuals with prevalent cancer (n = 172) 
at baseline to ensure data reliability by minimizing 

confounding factors, competing risks, and metabolic 
effects related to cancer and its treatments [23, 24]. A 
total of 3,467 participants were ultimately included to 
study the association between TyG and LAP dual-trajec-
tory and CMM development (Fig.  1). To further assess 
potential selection bias due to missing data, we com-
pared the incidence rates of FCMD, CMM, and all-cause 
mortality between included and excluded participants. 
No significant differences in outcomes incidence were 
observed (Additional file 1: Table S10).

Assessment of the TyG and LAP
The FPG was measured using the hexokinase UV method 
[22]. TG concentrations in fasting sample blood were 
assessed by calibration and enzymatic analysis [22]. The 
TyG was computed using the following formula: Ln [fast-
ing TG (mg/dL) × FPG (mg/dL)/2] [25].

Measurements of weight, height, and WC were gath-
ered according to standardized procedures outlined in 
earlier studies [26]. WC was measured at the midpoint 
between the iliac crest and the lowest rib laterally, and 
between the xiphoid process and the umbilicus anteri-
orly, with measurements recorded to the nearest 0.5 cm. 
LAP was calculated using the formula (WC(cm)-65) × 
TG (mmol/L) for man, and (WC(cm)-58) × TG (mmol/L) 
for women [27].

Other covariates
At baseline, demographic data and cardiometabolic risk 
factors—including age, sex, race, education, physical 
activity, smoking and drinking status, and use of antihy-
pertensive medications—were gathered using standard-
ized protocols [22].

Blood pressure was measured three times following a 
5 min rest period, and the mean of the three readings was 
recorded. Hypertension was defined as having a systolic 

Fig. 1 Flow chart of participant selection
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blood pressure (SBP) of 140 mmHg or above, a diastolic 
blood pressure (DBP) of 90 mmHg or above, or the use 
of antihypertensive drugs. BMI was derived by dividing 
body weight (kg) by the square of height (m), expressed 
as kg/m². Protocols for measuring serum total choles-
terol, High-density lipoprotein cholesterol (HDL-C) 
and low-density lipoprotein cholesterol (LDL-C). were 
detailed in prior studies [28]. Smoking status was catego-
rized into three classes: current, former, or never. Physi-
cal activity was measured using the validated CARDIA 
questionnaire, which quantified 13 exercise categories 
over the past year and converted them into exercise units 
(EU), with 300 EU equivalent to 150  min of moderate-
intensity exercise weekly [29].

Outcomes
The primary outcomes in this study were defined as first 
cardiometabolic disease (FCMD), CMM and all-cause 
mortality.

In accordance with established criteria from previ-
ous research, we defined CMM as the coexistence of at 
least two of the following three CMDs—T2D, CHD, and 
stroke—with the first occurring CMD identified as the 
FCMD [24, 30]. To define T2D, criteria included an FPG 
level reaching 126  mg/dL or more, a 2-hour post-chal-
lenge glucose level of ≥ 11.1 mmol/L (200 mg/dL), HbA1c 
at 48 mmol/mol (6.5%) or higher, or the administration of 
antidiabetic drugs. Participants were confirmed to be free 
of diabetes by Year 0, based on assessments of medica-
tion use and fasting glucose levels conducted at baseline.

Tracking of cardiovascular and cerebrovascular inci-
dents, which including CHD and stroke, as well as mor-
tality, was conducted from the initial assessment until 
August 31, 2014. For individuals who underwent hospi-
talization or outpatient vascular procedures, correspond-
ing medical documentation was collected. Vital status 
updates were obtained every six months, with next-of-
kin consent acquired for access to medical and death 
records as needed. Each reported event was reviewed 
independently by two physicians from the CARDIA End-
points Surveillance and Adjudication Subcommittee, 
adhering to predefined criteria for cardiovascular inci-
dents described in prior publications [31–33]. In cases 
of disagreement, the full committee conducted a review. 
Participants without events who remained in the study 
were censored as of August 31, 2014.

Statistical analysis
Continuous variables were reported as mean ± SD, and cat-
egorical variables as frequency (percentage). Participants 
were divided into quartiles according to their baseline TyG 
and LAP levels. Group differences were analyzed using 
ANOVA, Kruskal-Wallis test, and χ² test, as appropriate. 
Follow-up time was calculated as the duration from the 

baseline assessment (Year 0, 1985–1986) to the examina-
tion visit where incidences (FCMD, CMM or mortality) 
was identified or until the censoring time (loss to follow-
up, or end of cohort surveillance), whichever came first.

To explore the relationships between baseline TyG and 
LAP levels and FCMD, CMM, and all-cause mortality, 
Cox proportional hazards models were employed. Haz-
ard ratios (HRs) with 95% confidence interval (CI) were 
reported to estimate relative risks associated with dif-
ferent levels of TyG and LAP. The fully adjusted models 
accounted for baseline age, sex, race, BMI, education, 
physical activity, SBP, hypertension, antihypertensive 
medication use, smoking status, alcohol consumption, 
and LDL-C.

A group-based dual-trajectory model with a semi-
parametric approach was used to examine the temporal 
trends of TyG and LAP levels over the follow-up duration 
(from year 0 to year 25). This method enables the simul-
taneous analysis of both indicators’ dynamics, evaluating 
the likelihood of LAP trajectories corresponding to spe-
cific TyG trajectories. According to recommendations 
of Nagin [34], to select the optimal model, a two-stage 
approach was applied. Firstly, we identified the optimal 
number of trajectories for the model, exploring options 
from 2 to 5 clusters. In the following stage, the trajectory 
shapes were refined by adjusting the polynomial order, 
specifying them as linear, quadratic, or cubic. Selection 
of the best-fit dual-trajectory model was guided by three 
main criteria [35]: (1) minimum Bayesian Information 
Criterion (BIC) value; (2) each trajectory group included 
at least 5% of the participants; and (3) mean posterior 
probability greater than 0.7.

Participants were further grouped by dual-trajectory 
of TyG and LAP. We employed Cox proportional haz-
ards models to assess the associations of dual-trajectory 
groups with FCMD, CMM, and all-cause mortality, and 
calculated HRs and 95% CI to evaluate risk. The Cox 
models included the same set of baseline covariates for 
full adjustment as in the previous Cox models. To further 
evaluate the potential collinearity between TyG and LAP, 
we calculated the variance inflation factor (VIF), across 
all fully adjusted Cox models for FCMD, CMM, and 
mortality.

Subsequently, multi-state models, an extension of Cox 
proportional hazards models, were utilized to investi-
gate the role of dual-trajectory groups at multiple phases 
of CMM progression, beginning from a baseline with-
out CMDs to the development of FCMD, progression to 
CMM, and ultimately, mortality. The primary advantage 
of multi-state models lies in their ability to incorporate 
multiple sequential or competing events as transition 
states, enabling a comprehensive evaluation of risk fac-
tors across various phases of disease progression with 
consideration for competing risks [36, 37]. In accordance 
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with prior research [24, 38], five key transition stages 
were identified(Fig. 2): (1) baseline to FCMD (21.2%), (2) 
FCMD to CMM (10.7%), (3) baseline to death (1.6%), (4) 
FCMD to death (8.0%), and (5) CMM to death (26.6%). 
The initiation of CMM was defined by the occurrence 
date of a second CMD. For participants transitioning 
between different states on the same data, and in align-
ment with prior research methodologies, the theoretical 
entry date for the preceding state is estimated by sub-
tracting 0.5 days from the entry date of the subsequent 
state [24]. For instance, in patients newly diagnosed with 
CMM, the entry date into FCMD is derived as 0.5 days 
prior to the recorded date of CMM diagnosis. Given the 
relatively low number of events in some transitions, we 
further applied Bootstrap resampling (1000 iterations) 
to estimate bias-corrected and accelerated (BCa) confi-
dence intervals, improving the precision of risk estimates 
and ensuring robustness in the presence of small sample 
sizes.

Sensitivity analyses were conducted to assess the 
robustness of our findings. First, given the potential 
confounding effect of LDL-C, a sensitivity analysis was 
performed in participants with LDL-C < 4.144 mmol/L. 
Second, to account for the influence of cardiovascu-
lar medications, individuals taking antihypertensive, 
cardiac, or both types of medications at baseline were 
excluded. Third, to evaluate the impact of pre-existing 
malignancies, a sensitivity analysis including participants 
with baseline cancer was conducted. Forth, to exam-
ine whether the associations between dual-trajectory 
groups and CMM remained consistent across individual 
CMM components, a sensitivity analysis was performed 
by assessing the associations between dual-trajectory 
groups and each CMM component separately. Finally, to 
assess whether the association between dual-trajectory 
groups and all outcomes was independent of baseline 
fasting glucose levels, we conducted a sensitivity analysis 
adjusted for baseline FPG.

We constructed time-dependent Cox proportional haz-
ards models to further validate the associations between 
dual-trajectory groups and the risks of FCMD, CMM, 
and all-cause mortality while dynamically accounting 
for longitudinal changes in key metabolic risk factors. 
Using the counting-process framework (i.e., Surv (start 
time, stop time, event)), we incorporated time-updated 
covariates for body weight, physical activity, systolic 
blood pressure, smoking status, alcohol consumption 
and LDL-C, measured at Years 0, 5, 10, 15, 20, and 25. 
This approach allowed us to better capture the temporal 
variability of these clinically relevant exposures over the 
25-year follow-up.

We further conducted subgroup analyses stratified 
by sex, race, BMI, smoking status, LDL-C levels, and 
hypertension to examine potential effect modifications 
in the associations between dual-trajectory groups and 
outcomes.

Analyses were carried out in R (version 4.1.3), with the 
group-based dual-trajectory model fitted by the “lcmm” 
package and the multi-state models by “mstate”. All sta-
tistical tests were two-sided, with p-values below 0.05 
considered statistically significant in all analyses.

Results
Baseline characteristics of TyG and LAP quartiles and 
outcomes
This study included 3,467 participants with a baseline 
mean age of 25.08 ± 3.59 years, among whom 43.4% were 
male and 53.2% were white. Participants were separated 
into four quartile groups by TyG and LAP levels.

In the TyG quartile grouping (Additional file 1: Table 
S1), participants with higher TyG levels were older and 
more likely to be male, White, smokers, and daily alcohol 
consumers. They also had greater WC, BMI, SBP, DBP, 
TG, TC, LDL-C, FPG, LAP, and a higher prevalence of 
hypertension, while HDL-C was significantly lower. The 
LAP quartiles showed a similar trend (Additional file 1: 

Fig. 2 Counts and percentages of participants in the five transition stages of cardiometabolic outcomes
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Table S2). With increasing LAP levels, participants dem-
onstrated higher age, a greater proportion of males, and 
higher rates of smoking and alcohol intake. They also 
exhibited elevated WC, BMI, SBP, DBP, TG, TC, LDL-C, 
FPG, TyG, as well as a higher prevalence of hyperten-
sion and antihypertensive medication use, with notably 
reduced HDL-C levels.

Furthermore, (Additional file 1: Figure S1) illustrates 
the associations between TyG levels, LAP levels, and 
outcomes including FCMD, CMM, and all-cause mor-
tality. Elevated baseline TyG levels were associated with 
an increased risk of FCMD (HR = 1.51, 95% CI 1.31–1.75, 
P < 0.001), CMM (HR = 1.88, 95% CI 1.20–2.94, P = 0.006), 
and all-cause mortality (HR = 1.46, 95% CI: 1.06–2.01, 
P = 0.022). Similarly, higher baseline LAP levels were pos-
itively associated with FCMD (HR = 1.007, 95% CI: 1.003–
1.009, P < 0.001), CMM (HR = 1.008, 95% CI: 1.000-1.016, 
P = 0.047), and all-cause mortality (HR = 1.008, 95% CI 
1.003–1.017, P = 0.002).

Baseline characteristics based on dual-trajectory groups
In dual-trajectory analysis, a three-group model was iden-
tified as the best-fit pattern. (Additional file 1: Table S3). 
We identified 3 discrete dual-trajectory groups, denoted 
as low-increasing group (group 1, 61.5%), high-amplitude 
fluctuation group (group 2, 7.6%), and high-increasing 
group (group 3, 30.9%). The mean posterior probabilities 

for Groups 1, 2, and 3 were 0.86, 0.87, and 0.92, respec-
tively. As shown in Fig. 3, these groups displayed distinct 
trajectories throughout the follow-up period. Group 1 
demonstrated a stable and gradual increase in TyG and 
LAP levels. Group 2 showed pronounced fluctuations, 
characterized by an initial rapid increase reaching a peak 
around Year 5, followed by a marked decline to a nadir 
between Years 15 and 20, and subsequently rebounding 
with a sharp upward trend. In contrast, group 3 displayed 
a consistently rapid and steady increase in TyG and LAP 
levels over the entire follow-up. The median (interquar-
tile range) changes in TyG and LAP levels from Year 0 to 
Year 25 were 0.5 (0.46–0.57) for the low-increasing TyG 
group, 0.7 (0.7–0.92) for the high-amplitude fluctuation 
TyG group, and 0.71 (0.62–0.79) for the high-increasing 
TyG group. For LAP levels, the changes over this period 
were 20.27 (11.28–35.71) in the low-increasing group, 
33.12 (19.16–64.1) in the high-amplitude fluctuation 
group, and 29.49 (16.88–48.02) in the high-increasing 
group (Additional file 1: Table S4).

Table  1 shows the baseline characteristics of dual-
trajectory groups. Compared with group 1, participants 
in groups 2 and 3 were more often male and exhibited 
higher values in cardiometabolic markers, including WC, 
BMI, SBP, DBP, TC, TG, and LDL-C, while having signifi-
cantly lower HDL-C levels. Additionally, group 2 had the 
highest rates of smoking (38.0%, P = 0.001) and alcohol 

Fig. 3 Dual-trajectory of TyG and LAP levels over 25 years
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consumption (P = 0.045). In contrast, group 1 exhibited 
the lowest levels of the aforementioned metabolic burden 
and unhealthy lifestyle factors.

Dual-trajectory and outcomes
Over a mean follow-up of 24.04 ± 3.32 years, 736 (21.2%) 
individuals developed FCMD, including 428 with T2D, 
168 with CHD, and 140 with stroke. Additionally, 79 
(2.3%) progressed to CMM, and 137 (4.0%) experienced 
mortality. The Cox proportional hazards models revealed 
significant positive associations between dual-trajectory 
groups and risks of all three aforementioned outcomes. 
(Table  2). Compared with the low-increasing group, 
risks for all three outcomes were significantly elevated 
in the high-amplitude fluctuation group. For instance, 
in the unadjusted model, the HR for FCMD in the high-
amplitude fluctuation group was 1.78 (95% CI 1.40–2.26, 
P < 0.001); after adjusting for demographics and cardio-
metabolic risk factors (model 2), the HR decreased to 
1.39 (95% CI 1.09–1.78, P = 0.008), and further adjust-
ment for baseline TyG and LAP levels (model 3) yielded 
an HR of 1.38(95% CI 1.08–1.77, P = 0.01). For CMM risk, 
HRs (95% CI) for the high-amplitude fluctuation group 
across models 1 to 3 were 3.27(1.68–6.38), 2.61(1.27–
5.34), and 2.63(1.21–5.71), respectively (P < 0.05). 
Similarly, in terms of mortality, the HRs (95% CI) were 
3.05(1.87–4.98), 2.17(1.32–3.58), and 2.16(1.30–3.56) 
across the three models (P < 0.05).

The high-increasing group also demonstrated signifi-
cantly higher risks than the low-increasing group. The 
HR (95%CI) for FCMD increased from 1.54(1.31–1.79) 
in model 1 to 1.59(1.36–1.87) in model 3(P < 0.05). For 
CMM, HR (95%CI) rose from 2.00(1.23–3.26) in model 
1 to 2.68(1.57–4.56) in model 3. Similarly, for all-cause 
mortality, the HR decreased slightly from 1.85 (1.28–
2.66) in model 1 to 1.77 (1.21–2.59) in model 3 (P < 0.05). 
In addition, the VIF values for TyG and LAP ranged from 
1.76 to 2.36 across models, all well below the commonly 
accepted threshold of 5. These findings indicate low 

Characteristics Dual-trajectory group
Total
(n = 3467)

Group 1
(n = 2133)

Group 2
(n = 263)

Group 3
(n = 1071)

P 
value

Age, mean 
(SD), years

25.08 
(3.59)

25.05 
(3.58)

25.30 
(3.57)

25.08 
(3.62)

0.585

Male, no (%) 1505 
(43.40)

763 
(35.80)

143 
(54.40)

599 
(55.90)

< 0.001

White, no (%) 1845 
(53.20)

1151 
(54.00)

120 
(45.60)

574 
(53.60)

0.036

Waist 
circumference,
mean (SD), cm

77.49 
(10.70)

76.59 
(10.68)

80.83 
(11.27)

78.46 
(10.36)

< 0.001

BMI, mean 
(SD), kg/m²

24.42 
(4,71)

24.19 
(4.65)

25.61 
(4.96)

24.59 
(4.71)

< 0.001

SBP, mean (SD), 
mmHg

109.82 
(10.65)

109.02 
(10.44)

111.70 
(11.67)

110.96 
(10.66)

< 0.001

DBP, mean 
(SD), mmHg

68.05 
(9.19)

67.71 
(9.05)

69.35 
(9.43)

68.39 
(9.38)

0.008

Smoking sta-
tus, No. (%)

0.001

Current 
smoker

942 
(27.20)

547 
(25.60)

100 
(38.00)

295 
(27.50)

Former smoker 1040 
(30.00)

662 
(31.00)

71 
(27.00)

307 
(28.70)

Never smoker 1485 
(42.80)

924 
(43.30)

92 
(35.00)

469 
(43.80)

Alcohol 
consumption, 
median (SD), 
ml/day

11.47 
(19.87)

11.09 
(19.93)

14.32 
(20.32)

11.55 
(19.59)

0.045

Educational 
level,
mean (SD), 
year

13.82 
(1.83)

13.89 
(1.82)

13.22 
(1.86)

13.83 
(1.83)

< 0.001

Physical 
activity,
mean (SD), EU

419.07 
(297.39)

410.89 
(294.60)

432.29 
(286.74)

432.12 
(305.09)

0.123

TC, mean (SD), 
mg/dL

177.53 
(32.96)

176.95 
(32.88)

180.77 
(35.99)

177.88 
(32.33)

0.189

TG, mean (SD), 
mg/dL

72.62 
(47.82)

73.08 
(46.06)

83.01 
(66.31)

69.15 
(45.44)

< 0.001

LDL-C, mean 
(SD), mg/dL

109.81 
(30.87)

108.38 
(30.66)

113.25 
(33.04)

111.81 
(30.57)

0.002

HDL-C, mean 
(SD), mg/dL

53.20 
(12.84)

53.97 
(12.73)

50.92 
(12.41)

52.24 
(13.05)

< 0.001

FPG, mean 
(SD), mg/dL

81.93 
(10.87)

81.98 
(10.39)

83.19 
(19.69)

81.53 
(8.50)

0.083

TyG, mean (SD) 7.86 (0.51) 7.87 (0.50) 7.95 
(0.61)

7.80 (0.51) < 0.001

LAP, mean (SD) 15.01 
(19.07)

14.56 
(17.29)

21.35 
(31.85)

14.36 
(17.97)

< 0.001

Table 1 Baseline characteristics of participants stratified by dual-
trajectory groups Characteristics Dual-trajectory group

Total
(n = 3467)

Group 1
(n = 2133)

Group 2
(n = 263)

Group 3
(n = 1071)

P 
value

Hypertension, 
no (%)

300 (8.70) 183 (8.60) 27 
(10.30)

90 (8.40) 0.617

Antihyperten-
sive medica-
tion, no (%)

71 (2.00) 49 (2.30) 7 (2.70) 15 (1.40) 0.183

Group 1: Low-increasing trajectory group; Group 2: High-amplitude fluctuation 
trajectory group; Group 3: High-increasing trajectory group

Abbreviations: BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic 
blood pressure; TG, triglyceride; TC, total cholesterol; HDL-C, high-density 
lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; CAC, 
coronary artery calcium; FPG, fasting plasma glucose; TyG, triglyceride-glucose 
index; LAP, lipid accumulation product

Table 1 (continued) 



Page 8 of 14Zhou et al. Cardiovascular Diabetology          (2025) 24:198 

multicollinearity and confirm that TyG and LAP provide 
independent information in relation to cardiometabolic 
outcomes.

Multi-state analysis
A multi-state analysis was utilized to investigate the role 
of dual-trajectory groups in shaping transition dynam-
ics across each stage of CMM development. Figure  2 

illustrates a gradual increase in mortality risk with the 
progression of CMM. Table 3 further details the transition 
risks across trajectory groups. Compared with the low-
increasing group, the high-amplitude fluctuation group 
exhibited significantly higher risks at all stages, including 
baseline to FCMD (HR 1.41, 95% CI 1.17–1.63, P = 0.015), 
FCMD to CMM (HR 2.07, 95% CI 1.53–3.96, P = 0.023), 
CMM to death (HR 2.87, 95% CI 1.19–7.62, P = 0.041), and 
FCMD to death (HR 2.71, 95% CI 1.58–5.04, P = 0.007). 
In contrast, the high-increasing group exhibited elevated 
risk primarily in the earlier stages, including baseline to 
FCMD (HR 1.51, 95% CI 1.33–1.72, P < 0.001) and FCMD 
to CMM (HR 1.87, 95% CI: 1.12-2.96, P = 0.019), with no 
significant differences observed in subsequent mortality 
stages (CMM to death, HR 1.05, P = 0.731; FCMD to death, 
HR 1.54, P = 0.256).

Sensitivity analysis
In participants whose baseline LDL-C was < 4.144 
mmol/L, the risks for FCMD, CMM, and all-cause mor-
tality remained significantly elevated in the high-ampli-
tude fluctuation and high-increasing groups, in alignment 
with the primary analysis (Additional file 1: Table S5). 
Second, individuals on antihypertensive, cardiac, or both 
medications were excluded, and this exclusion did not 
alter the risk patterns observed across dual-trajectory 
groups (Additional file 1: Table S6). Furthermore, includ-
ing baseline cancer patients in the analysis showed that 
elevated risks for FCMD, CMM, and all-cause mortality 
remained significant in high-amplitude fluctuation and 
high-increasing groups, underscoring the robustness of 
these findings (Additional file 1: Table S7). The sensitiv-
ity analysis examining dual-trajectory group associa-
tions with individual CMM components showed that the 

Table 2 Risk of FCMD, CMM and all-cause mortality for dual-trajectory groups
Dual-trajectory groups No. events/total Model 1 Model 2 Model 3

HR (95%CI) P value HR (95%CI) P value HR (95%CI) P value
FCMD
Low-increasing 382/2133 Reference 1.0 Reference 1.0 Reference 1.0
High-amplitude fluctuation 80/263 1.78(1.40–2.26) < 0.001 1.39(1.09–1.78) 0.008 1.38(1.08–1.77) 0.01
High-increasing 274/1071 1.54(1.31–1.79) < 0.001 1.48(1.27–1.74) < 0.001 1.59(1.36–1.87) < 0.001
CMM
Low-increasing 33/2133 Reference 1.0 Reference 1.0 Reference 1.0
High-amplitude fluctuation 12/263 3.27(1.68–6.38) < 0.001 2.61(1.27–5.34) 0.008 2.63(1.21–5.71) 0.01
High-increasing 34/1071 2.00(1.23–3.26) 0.005 2.33(1.38–3.91) 0.001 2.68(1.57–4.56) < 0.001
Death
Low-increasing 63/2133 Reference 1.0 Reference 1.0 Reference 1.0
High-amplitude fluctuation 27/263 3.05(1.87–4.98) < 0.001 2.17(1.32–3.58) 0.002 2.16(1.30–3.56) 0.003
High-increasing 47/1071 1.85(1.28–2.66) 0.001 1.68(1.16–2.45) 0.006 1.77(1.21–2.59) 0.003
Model 1: Unadjusted

Model 2: Adjusted for baseline age, race, sex, body mass index, education, physical activity, systolic blood pressure, hypertension, antihypertensive medication use, 
smoking status, alcohol consumption and low-density lipoprotein cholesterol

Model 3: Adjusted for model 2 covariates plus TyG and LAP at year 0

Abbreviation: HR, hazard ratio; CI, confidence interval; FCMD, first cardiometabolic disease; CMM, cardiometabolic multimorbidity

Table 3 Associations between the dual-trajectory groups and 
CMM transition patterns
Transition pattern Case HR (95%CI)* P value
Low-increasing
Baseline → FCMD 382 Reference 1.0
FCMD → CMM 33 Reference 1.0
CMM → Death 9 Reference 1.0
FCMD → Death 24 Reference 1.0
Baseline → Death 30 Reference 1.0
High-amplitude fluctuation
Baseline → FCMD 80 1.41 (1.17–1.63) 0.015
FCMD → CMM 12 2.07 (1.53–3.96) 0.023
CMM → Death 6 2.87 (1.19–7.62) 0.041
FCMD → Death 12 2.71 (1.58–5.04) 0.007
Baseline → Death 9 1.14 (0.81–3.15) 0.179
High-increasing
Baseline → FCMD 274 1.51 (1.33–1.72) < 0.001
FCMD → CMM 34 1.87 (1.12–2.96) 0.019
CMM → Death 6 1.05 (0.54–3.78) 0.731
FCMD → Death 23 1.54 (0.78–2.34) 0.256
Baseline → Death 18 1.26 (0.84–2.38) 0.079
Models adjusted for baseline age, race, sex, body mass index, education, 
physical activity, systolic blood pressure, hypertension, antihypertensive 
medication use, smoking status, alcohol consumption and low-density 
lipoprotein cholesterol. Abbreviations as in Table 2

*Hazard ratios and 95% confidence intervals were estimated using Bootstrap 
resampling (1,000 iterations) with bias-corrected and accelerated intervals
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high-increasing group had the higher risk for T2D and 
stroke, while the high-amplitude fluctuation group was 
strongly associated with all outcomes (Additional file 1: 
Table S8). Finally, after adjusted for baseline FPG, the 
risks for all outcomes remained significantly elevated 
in the high-amplitude fluctuation and high-increasing 
groups (Additional file 1: Table S9).

Time-dependent Cox analysis
Additionally, we conducted time-dependent Cox regres-
sion analyses to examine whether the associations 
between dual-trajectory groups and outcomes remained 
robust after accounting for longitudinal changes in key 
risk factors. The results showed that, compared with the 
low-increasing group, individuals in the high-amplitude 
fluctuation group exhibited significantly elevated risks of 
FCMD (HR = 1.46, 95% CI 1.14–1.86), CMM (HR = 3.01, 
95% CI 1.49–6.08), and all-cause mortality (HR = 2.35, 
95% CI 1.43–3.86). Similarly, the high-increasing group 
also showed significantly increased risks of FCMD 
(HR = 1.34, 95% CI 1.14–1.57), CMM (HR = 2.42, 95% CI 

1.44–4.09), and mortality (HR = 1.71, 95% CI: 1.18–2.50) 
(Additional file 1: Table S11).

Subgroup analysis
After stratifying participants sex, race, BMI, smoking sta-
tus, lipid levels, and hypertension revealed that the link 
between dual-trajectory groups and outcomes remained 
similar (Fig.  4). For CMM risk, all subgroup interaction 
effects were non-significant except for the LDL-C sub-
group, which showed a significant interaction (P = 0.01). 
Similarly, subgroup analysis for all-cause mortality risk 
showed high stability, with non-significant interaction 
P-values across all subgroups (P > 0.05). However, FCMD 
risk exhibited some variability within the BMI and race 
subgroups, with both showing significant interaction 
P-values (P < 0.001).

Discussion
In this study, based on data from a prospective cohort, we 
found that elevated baseline TyG and LAP levels in young 
adulthood were associated with increased risks of FCMD, 
CMM, and mortality in middle age. We also identified 

Fig. 4 Association between TyG and LAP dual-trajectory and cardiometabolic outcomes in subgroup analysis. a subgroup analysis of the association 
between Dual-trajectory and FCMD. b subgroup analysis of the association between Dual-trajectory and CMM. c subgroup analysis of the association 
between Dual-trajectory and all-cause mortality. Models were adjusted for baseline age, race, sex, body mass index, education, physical activity, systolic 
blood pressure, hypertension, antihypertensive medication use, smoking status, alcohol consumption and low-density lipoprotein cholesterol. *HR and 
95% CI were derived from Cox regression models and low Low-increasing trajectory group was used as the reference in each subgroup analysis
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three distinct dual-trajectory groups for TyG and LAP 
levels in young adults: low-increasing, high-amplitude 
fluctuation, and high-increasing. We further found that 
high-amplitude fluctuation trajectories and high-increas-
ing trajectories of TyG and LAP are significantly associated 
with the increased risk of FCMD, CMM, and mortality. 
Unlike traditional single-time measurements, trajectory 
patterns more intuitively capture the dynamic changes in 
metabolic status, emphasizing the cumulative impact of 
insulin resistance and lipid metabolism disorders.

Our findings align with previous studies that have 
shown elevated TyG and LAP levels to be predictive of 
cardiometabolic disorders [12, 18, 39, 40]. However, 
compared with baseline models, dual-trajectory model-
ing yielded stronger and more consistent associations, 
particularly for long-term outcomes. For example, the 
high-amplitude fluctuation group demonstrated over a 
twofold increased risk of both CMM and mortality, even 
after adjustment for baseline TyG and LAP levels. These 
results indicate that the dual-trajectory approach pro-
vides additional predictive value by capturing cumula-
tive metabolic exposure and long-term variability, which 
single-timepoint measurements may fail to reflect. This 
modeling strategy enables the identification of indi-
viduals at persistently elevated or unstable metabolic 
states—patterns that confer greater risk yet may remain 
undetected in conventional static assessments. Further-
more, few studies have clarified the co-evolution patterns 
of these two markers. Given that each of these markers 
independently predicts cardiometabolic risk, exploring 
their combined trajectory is crucial to understanding 
the full extent of metabolic dysregulation. Our research 
identified a synchronous trend in the dual trajectories 
of TyG and LAP, which revealed a systemic nature of 
metabolic imbalance that went beyond single measure-
ments. Several mechanisms may partially account for 
this synchronous trend. IR disrupts lipid and glucose 
metabolic pathways, leading to visceral fat accumula-
tion, elevated circulating free fatty acids (FFA), and per-
sistently high levels of pro-inflammatory cytokines like 
TNF-α and IL-6 [8, 41]. This metabolic dysregulation 
accelerates triglyceride and glucose production, thereby 
raising TyG levels, while FFA accumulation further pro-
motes visceral fat deposition, increasing the LAP [42]. 
Additionally, chronic low-grade inflammation induced by 
IR exacerbates systemic lipid and glucose metabolic dis-
turbances, reinforcing the link between TyG and LAP [8, 
43]. Addressing these disturbances in glucose and lipid 
metabolism may be crucial for interrupting this cycle and 
preventing CMM development. These findings under-
score the combined impact of TyG and LAP, highlighting 
the importance of dynamic monitoring of blood glucose, 
lipids, and fat distribution for effective cardiometabolic 
health management. Building upon these insights, we 

further investigated whether the observed associations 
between trajectory groups and adverse outcomes could 
be explained by concurrent changes in key metabolic risk 
factors. To this end, we conducted time-dependent Cox 
regression analyses incorporating time-updated covari-
ates. Notably, the high-amplitude fluctuation and high-
increasing groups remained significantly associated with 
elevated risks of FCMD, CMM, and mortality. These 
findings suggest that dual-trajectory patterns reflect 
a broader and more persistent metabolic imbalance, 
beyond the effects of individual time-varying risk expo-
sures. Clinically, this reinforces the need for long-term, 
multi-dimensional risk management strategies aimed at 
sustaining metabolic stability and reducing cumulative 
exposure to dynamic stressors.

Numerous studies have demonstrated a link between 
higher long-term trajectory of TyG and LAP and adverse 
cardiovascular outcomes [44–49]. However, these stud-
ies have primarily concentrated on a single disease stage, 
without assessing the impact of long-term trajectory 
of TyG and LAP across various transition stages in the 
entire progression of CMM-namely, from being CMD-
free to developing FCMD, progressing to CMM, and 
eventually leading to mortality. To overcome these limi-
tations, we utilized a multi-state model that accounts for 
competing risks as well as transitions across different car-
diometabolic stages. Our findings suggest that both the 
high-amplitude fluctuation and high-increasing groups 
could impact entire progression of CMM. Furthermore, 
we found distinct risk distribution patterns between the 
high-amplitude fluctuation and high-increasing groups. 
The high-amplitude fluctuation group presents a higher 
risk that intensifies in all stages of disease progression, 
while the high-increasing group has a greater impact 
on the earlier stages. This distinction is likely due to the 
instability, cumulative metabolic damage, and lack of 
gradual adaptation caused by metabolic fluctuations. A 
prospective cohort study revealed that revealed greater 
TyG variability were causally related to higher incidence 
of CVD [50]. The underlying mechanism between the 
high-amplitude fluctuation group and the overall pro-
gression of CMM is not fully understood, and we have 
hypothesized several plausible mechanisms. Frequent 
fluctuations result in significant changes in insulin resis-
tance, blood glucose, and lipid levels, which place the 
cardiovascular system in a prolonged state of stress. 
Thereby the likelihood of systemic inflammation, oxida-
tive stress, endothelial dysfunction and plaque instability 
is increased which raise the risk of CMM and all-cause 
mortality [51, 52]. With disease progression, cumulative 
metabolic damage increases, leading individuals in the 
high-amplitude fluctuation group to experience mul-
tiple fluctuation cycles, repeated stress, and metabolic 
disorders. Consequently, they are more prone to severe 
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complications, organ failure, and a significantly higher 
risk of death [53]. In contrast, although the metabolic 
indicators of individuals in the high-increasing group 
continued to rise, the steady upward trend enabled the 
body to gradually adapt to this metabolic burden, reduc-
ing the accumulated inflammation and stress [54]. There-
fore, the risk in the high-increasing group is mainly 
concentrated in the early stages when the cardiovascu-
lar system had not fully adapted to metabolic stress, and 
FCMD and CMM were more likely to occur. With disease 
progression, metabolic adaptation provides some protec-
tion in later stages, resulting in no significant difference 
in the progression from CMM to mortality or FCMD to 
mortality. This finding suggests that late-stage interven-
tion has limited effects, emphasizing the importance of 
early intervention to address metabolic abnormalities 
and maintain a stable metabolic state, thereby reducing 
the risks of cardiometabolic disease and all-cause mor-
tality. Adjusting lifestyle factors (e.g., diet management, 
increased exercise, stable daily routine) and pharmaco-
logical intervention to improve IR and reduce visceral 
fat accumulation may help delay the progression of car-
diometabolic disease. Given the high metabolic fluctua-
tion in some individuals, a single time-point intervention 
may be insufficient for long-term effects. Thus, a dynamic 
monitoring and individualized management approach 
is recommended to stabilize metabolic fluctuations and 
mitigate cumulative systemic stress.

Our analysis also indicates that individuals with higher 
baseline TyG and LAP levels, as well as those with high-
increasing and high-amplitude fluctuation trajectories, 
display a significantly higher proportion of males, high-
lighting gender differences in metabolic trajectories. 
Males are more susceptible to fat accumulation in the 
visceral area, a pattern linked to lipid metabolism dis-
orders and elevated LAP [55]. Additionally, androgens, 
such as testosterone, can promote visceral fat accumula-
tion and increase pro-inflammatory factors, thus exac-
erbating IR and elevating TyG levels [56–58]. Female 
estrogen, to a certain extent, inhibits the accumulation 
of visceral fat and plays a protective role [57]. Males also 
tend to consume a high-calorie diet, which can lead to 
visceral fat accumulation and metabolic burden [59]. 
In response to environmental stress or dietary changes, 
males exhibit greater sensitivity to IR and inflammation, 
leading to higher metabolic fluctuations [60, 61]. These 
sex-specific metabolic responses and lifestyle differences 
jointly contribute to the higher likelihood of males fol-
lowing high-risk metabolic trajectories under increased 
metabolic load. Furthermore, our subgroup analyses 
revealed a significant interaction between LDL-C levels 
and metabolic trajectories in relation to CMM risk. This 
suggests that LDL-C may amplify the adverse effects of 
metabolic instability and overload, accelerating systemic 

inflammation, oxidative stress, and endothelial dysfunc-
tion [62]. Further studies are warranted to validate these 
findings and elucidate potential mechanisms.

This study has several limitations. As an observational 
cohort study, residual confounding may still exist despite 
adjustments for multiple factors, and the relatively homo-
geneous sample may limit generalizability. A potential 
concern is retrospective classification bias in trajectory 
modeling, particularly regarding the inclusion of glucose 
in both TyG and T2D diagnosis. However, this bias was 
minimized as group-based trajectory modeling classi-
fied individuals based on longitudinal patterns rather 
than predefined disease status, and model selection was 
guided by BIC and posterior probability to ensure robust 
classification. Additionally, sensitivity analyses adjusting 
for baseline FPG confirmed that the associations between 
dual trajectories and outcomes were independent of 
baseline glucose levels. The dual-trajectory approach 
further mitigates concerns by incorporating LAP, a 
marker of lipid accumulation and visceral fat, reflecting 
broader metabolic dysfunction beyond hyperglycemia 
alone. Another limitation is the relatively small num-
ber of events in certain transition states, particularly for 
later-stage transitions, which may introduce variability in 
risk estimates. This is partly because the cohort is still in 
midlife, resulting in fewer mortality events at this stage. 
Bootstrap resampling was employed to enhance the pre-
cision of risk estimates. Lastly, the timing of T2D diag-
nosis was based on periodic assessments and may not 
reflect the true onset of disease. This delayed ascertain-
ment could lead to imprecise event timing, particularly 
for transitions to FCMD or CMM. Nonetheless, because 
all participants were assessed under the same follow-up 
schedule, any such misclassification is likely to be non-
differential and would bias the results conservatively. 
Future studies with extended follow-up durations, larger 
and more diverse populations, and alternative trajectory 
modeling strategies are warranted to validate these find-
ings and further assess the robustness of TyG and LAP as 
long-term predictors of cardiometabolic multimorbidity.

Conclusion
This study demonstrates that higher TyG and LAP levels 
in early adulthood are associated with an increased risk 
of FCMD, CMM, and mortality by midlife. Addition-
ally, chronic exposure to elevated and fluctuating TyG 
and LAP levels in young adulthood is associated with 
increased CMM risk, with fluctuating TyG and LAP lev-
els showing higher risks across all stages of CMM devel-
opment, while consistently high levels primarily impact 
earlier stages. These findings emphasize the critical role 
of early intervention and sustained monitoring of insulin 
resistance and lipid accumulation to mitigate long-term 
cardiometabolic risks.



Page 12 of 14Zhou et al. Cardiovascular Diabetology          (2025) 24:198 

Abbreviations
TyG  Triglyceride–glucose index
LAP  Lipid accumulation product
CHD  Coronary heart disease
T2D  Type 2 diabetes
CMDs  Cardiometabolic diseases
CMM  Cardiometabolic multimorbidity
FCMD  First cardiometabolic disease
CARDIA  Coronary Artery Risk Development in Young Adults
CVD  Cardiovascular disease
SBP  Systolic blood pressure
DBP  Diastolic blood pressure
BMI  Body mass index
WC  Waist circumference
HDL-C  High-density lipoprotein cholesterol
LDL-C  Low-density lipoprotein cholesterol
TG  Triglyceride
FPG  Fasting plasma glucose
CRP  C-reactive protein
IR  Insulin resistance
HR  Hazard ratio
CI  Confidence interval

Supplementary Information
The online version contains supplementary material available at  h t t p s :   /  / d o  i .  o r  
g  /  1 0  . 1 1   8 6  / s 1 2  9 3 3 -  0 2 5 - 0  2 7 6 1 - 1.

Additional file 1.

Acknowledgements
The authors thank the staff and participants of the CARDIA (Coronary Artery 
Risk Development in Young Adults) study for their contributions.

Author contributions
YYZ had full access to all of the data in the study and took responsibility 
for the integrity of the data and the accuracy of the data analysis. YYZ, LQZ 
and JJW contributed to the study design and inception. LQZ, JJW, and ZRZ 
contributed to the acquisition, analysis, interpretation of data, and drafted 
the manuscript. QG and LJW contributed to the analysis of the data and 
interpretation. HZ and ZYZ revised the manuscript. All authors provided a 
revision of the manuscript for critically important intellectual content and 
approved the final version of the manuscript.

Funding
This research was funded by the Youth Fund of the National Natural Science 
Foundation of China, Grant/Award Number: 81900443.

Data availability
Data documentation for CARDIA is publicly available at cardia.dopm.uab.edu.

Declarations

Ethics approval and consent to participate
The study was performed according to the guidelines of the Helsinki 
Declaration and was approved by the Institutional Review Board at Sun 
Yat-sen Memorial Hospital. Written informed consent was obtained from all 
participants for data collection.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1Department of Ultrasonography and Electrocardiograms, State Key 
Laboratory of Oncology in South China, Collaborative Innovation Center 

for Cancer Medicine, Sun Yat-sen University Cancer Center,  
Guangzhou 510060, People’s Republic of China
2Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen 
University, 107 West Yanjiang Road, Guangzhou  
510120, People’s Republic of China
3Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen 
University, Guangzhou 510120, People’s Republic of China
4Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics 
and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen 
University, Guangzhou 510120, Guangdong, People’s Republic of China

Received: 12 November 2024 / Accepted: 26 April 2025

References
1. Skou ST, Mair FS, Fortin M, Guthrie B, Nunes BP, Miranda JJ, Boyd CM, Pati S, 

Mtenga S, Smith SM. Multimorbidity. Nat Rev Dis Primers. 2022;8(1):48.
2. Salisbury C. Multimorbidity: redesigning health care for people who use it. 

Lancet. 2012;380(9836):7–9.
3. Di Angelantonio E, Kaptoge S, Wormser D, Willeit P, Butterworth AS, Bansal N, 

O’Keeffe LM, Gao P, Wood AM, Burgess S, et al. Association of cardiometabolic 
Multimorbidity with mortality. JAMA. 2015;314(1):52–60.

4. Zhao Q, Cheng YJ, Xu YK, Zhao ZW, Liu C, Sun TN, Zhou YJ. Comparison of 
various insulin resistance surrogates on prognostic prediction and stratifica-
tion following percutaneous coronary intervention in patients with and 
without type 2 diabetes mellitus. Cardiovasc Diabetol. 2021;20(1):190.

5. Sakakibara BM, Obembe AO, Eng JJ. The prevalence of cardiometabolic multi-
morbidity and its association with physical activity, diet, and stress in Canada: 
evidence from a population-based cross-sectional study. BMC Public Health. 
2019;19(1):1361.

6. Joseph JJ, Rajwani A, Roper D, Zhao S, Kline D, Odei J, Brock G, Echouffo-
Tcheugui JB, Kalyani RR, Bertoni AG, et al. Associations of cardiometabolic 
multimorbidity with all-cause and coronary heart disease mortal-
ity among black adults in the Jackson heart study. JAMA Netw Open. 
2022;5(10):e2238361.

7. Hill MA, Yang Y, Zhang L, Sun Z, Jia G, Parrish AR, Sowers JR. Insulin resis-
tance, cardiovascular stiffening and cardiovascular disease. Metabolism. 
2021;119:154766.

8. Tao LC, Xu JN, Wang TT, Hua F, Li JJ. Triglyceride-glucose index as a marker 
in cardiovascular diseases: landscape and limitations. Cardiovasc Diabetol. 
2022;21(1):68.

9. Huo RR, Liao Q, Zhai L, You XM, Zuo YL. Interacting and joint effects of 
triglyceride-glucose index (TyG) and body mass index on stroke risk and the 
mediating role of TyG in middle-aged and older Chinese adults: a nationwide 
prospective cohort study. Cardiovasc Diabetol. 2024;23(1):30.

10. Kuang M, Yang R, Huang X, Wang C, Sheng G, Xie G, Zou Y. Assessing tem-
poral differences in the predictive power of baseline TyG-related parameters 
for future diabetes: an analysis using time-dependent receiver operating 
characteristics. J Transl Med. 2023;21(1):299.

11. Ren Q, Huang Y, Liu Q, Chu T, Li G, Wu Z. Association between triglyceride 
glucose-waist height ratio index and cardiovascular disease in middle-aged 
and older Chinese individuals: a nationwide cohort study. Cardiovasc Diabe-
tol. 2024;23(1):247.

12. Wang L, Cong HL, Zhang JX, Hu YC, Wei A, Zhang YY, Yang H, Ren LB, Qi W, Li 
WY, et al. Triglyceride-glucose index predicts adverse cardiovascular events 
in patients with diabetes and acute coronary syndrome. Cardiovasc Diabetol. 
2020;19(1):80.

13. Tao S, Yu L, Li J, Huang L, Huang X, Zhang W, Xie Z, Tan Y, Yang D. Association 
between the triglyceride-glucose index and 1-year major adverse cardio-
vascular events in patients with coronary heart disease and hypertension. 
Cardiovasc Diabetol. 2023;22(1):305.

14. Bhupathiraju SN, Hu FB. Epidemiology of obesity and diabetes and their 
cardiovascular complications. Circ Res. 2016;118(11):1723–35.

15. Ross R, Neeland IJ, Yamashita S, Shai I, Seidell J, Magni P, Santos RD, Arsenault 
B, Cuevas A, Hu FB, et al. Waist circumference as a vital sign in clinical practice: 
a consensus statement from the IAS and ICCR working group on visceral 
obesity. Nat Rev Endocrinol. 2020;16(3):177–89.

16. Silveira EA, Kliemann N, Noll M, Sarrafzadegan N, de Oliveira C. Visceral obe-
sity and incident cancer and cardiovascular disease: an integrative review of 
the epidemiological evidence. Obes Rev. 2021;22(1):e13088.

https://doi.org/10.1186/s12933-025-02761-1
https://doi.org/10.1186/s12933-025-02761-1


Page 13 of 14Zhou et al. Cardiovascular Diabetology          (2025) 24:198 

17. Deng H, Hu P, Li H, Zhou H, Wu X, Yuan M, Duan X, Lao M, Wu C, Zheng M, 
et al. Novel lipid indicators and the risk of type 2 diabetes mellitus among 
Chinese hypertensive patients: findings from the Guangzhou heart study. 
Cardiovasc Diabetol. 2022;21(1):212.

18. Taverna MJ, Martínez-Larrad MT, Frechtel GD, Serrano-Ríos M. Lipid accumula-
tion product: a powerful marker of metabolic syndrome in healthy popula-
tion. Eur J Endocrinol. 2011;164(4):559–67.

19. Xiao D, Sun H, Chen L, Li X, Huo H, Zhou G, Zhang M, He B. Assessment of six 
surrogate insulin resistance indexes for predicting cardiometabolic multi-
morbidity incidence in Chinese middle-aged and older populations: insights 
from the China health and retirement longitudinal study. Diabetes Metab Res 
Rev. 2024;40(1):e3764.

20. Kolb H. Obese visceral fat tissue inflammation: from protective to detrimen-
tal? BMC Med. 2022;20(1):494.

21. Nagin DS, Jones BL, Elmer J. Recent advances in group-based trajectory 
modeling for clinical research. Annu Rev Clin Psychol. 2024;20(1):285–305.

22. Friedman GD, Cutter GR, Donahue RP, Hughes GH, Hulley SB, Jacobs DR Jr., 
Liu K, Savage PJ. CARDIA: study design, recruitment, and some characteristics 
of the examined subjects. J Clin Epidemiol. 1988;41(11):1105–16.

23. Odegaard AO, Koh WP, Gross MD, Yuan JM, Pereira MA. Combined lifestyle 
factors and cardiovascular disease mortality in Chinese men and women: the 
Singapore Chinese health study. Circulation. 2011;124(25):2847–54.

24. Han Y, Hu Y, Yu C, Guo Y, Pei P, Yang L, Chen Y, Du H, Sun D, Pang Y, et al. Life-
style, cardiometabolic disease, and multimorbidity in a prospective Chinese 
study. Eur Heart J. 2021;42(34):3374–84.

25. Guerrero-Romero F, Simental-Mendía LE, González-Ortiz M, Martínez-Abundis 
E, Ramos-Zavala MG, Hernández-González SO, Jacques-Camarena O, Rodrí-
guez-Morán M. The product of triglycerides and glucose, a simple measure of 
insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. 
J Clin Endocrinol Metab. 2010;95(7):3347–51.

26. Cutter GR, Burke GL, Dyer AR, Friedman GD, Hilner JE, Hughes GH, Hulley SB, 
Jacobs DR, Liu K, Manolio TA. Cardiovascular risk factors in young adults. The 
CARDIA baseline monograph. Control Clin Trials 1991, 12(1 Suppl).

27. Qiao T, Luo T, Pei H, Yimingniyazi B, Aili D, Aimudula A, Zhao H, Zhang H, Dai J, 
Wang D. Association between abdominal obesity indices and risk of cardio-
vascular events in Chinese populations with type 2 diabetes: a prospective 
cohort study. Cardiovasc Diabetol. 2022;21(1):225.

28. Okwuosa TM, Greenland P, Burke GL, Eng J, Cushman M, Michos ED, Ning 
H, Lloyd-Jones DM. Prediction of coronary artery calcium progression in 
individuals with low Framingham risk score: the multi-ethnic study of athero-
sclerosis. JACC Cardiovasc Imaging. 2012;5(2):144–53.

29. Laddu DR, Rana JS, Murillo R, Sorel ME, Quesenberry CP, Allen NB, Gabriel KP, 
Carnethon MR, Liu K, Reis JP, et al. 25-Year physical activity trajectories and 
development of subclinical coronary artery disease as measured by coronary 
artery calcium: the coronary artery risk development in young adults (CAR-
DIA) study. Mayo Clin Proc. 2017;92(11):1660–70.

30. Luo Y, He L, Ma T, Li J, Bai Y, Cheng X, Zhang G. Associations between 
consumption of three types of beverages and risk of cardiometabolic multi-
morbidity in UK biobank participants: a prospective cohort study. BMC Med. 
2022;20(1):273.

31. Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE. 
Classification of subtype of acute ischemic stroke. Definitions for use in a 
multicenter clinical trial. TOAST. Trial of org 10172 in acute stroke treatment. 
Stroke. 1993;24(1):35–41.

32. Easton JD, Saver JL, Albers GW, Alberts MJ, Chaturvedi S, Feldmann E, 
Hatsukami TS, Higashida RT, Johnston SC, Kidwell CS, professionals from 
the American heart association/American stroke association stroke council; 
council on cardiovascular surgery, the interdisciplinary council on peripheral 
vascular disease. The American academy of neurology affirms the value of 
this statement as an educational tool for neurologists. Stroke. Definition and 
evaluation of transient ischemic attack: a scientific statement for healthcare 
and Anesthesia; Council on cardiovascular radiology and intervention; coun-
cil on cardiovascular nursing; and 2009, 40(6):2276–2293.

33. Pettee Gabriel K, Whitaker KM, Duprez D, Sternfeld B, Lewis CE, Sidney S, Knell 
G, Jacobs DR Jr. Clinical importance of non-participation in a maximal graded 
exercise test on risk of non-fatal and fatal cardiovascular events and all-cause 
mortality: CARDIA study. Prev Med. 2018;106:137–44.

34. Nagin DS, Jones BL, Passos VL, Tremblay RE. Group-based multi-trajectory 
modeling. Stat Methods Med Res. 2018;27(7):2015–23.

35. Beales D, Beynon A, Jacques A, Smith A, Cicuttini F, Straker L. Insight into 
the longitudinal relationship between chronic subclinical inflammation 

and obesity from adolescence to early adulthood: a dual trajectory analysis. 
Inflamm Res. 2021;70(7):799–809.

36. Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and 
multi-state models. Stat Med. 2007;26(11):2389–430.

37. Meira-Machado L, de Uña-Alvarez J, Cadarso-Suárez C, Andersen PK. Multi-
state models for the analysis of time-to-event data. Stat Methods Med Res. 
2009;18(2):195–222.

38. Singh-Manoux A, Fayosse A, Sabia S, Tabak A, Shipley M, Dugravot A, Kivimäki 
M. Clinical, socioeconomic, and behavioural factors at age 50 years and risk 
of cardiometabolic multimorbidity and mortality: a cohort study. PLoS Med. 
2018;15(5):e1002571.

39. Kahn HS. The lipid accumulation product performs better than the body 
mass index for recognizing cardiovascular risk: a population-based compari-
son. BMC Cardiovasc Disord. 2005;5:26.

40. Zhang Y, Ding X, Hua B, Liu Q, Gao H, Chen H, Zhao XQ, Li W, Li H. Predictive 
effect of triglyceride–glucose index on clinical events in patients with type 
2 diabetes mellitus and acute myocardial infarction: results from an observa-
tional cohort study in China. Cardiovasc Diabetol. 2021;20(1):43.

41. Titchenell PM, Lazar MA, Birnbaum MJ. Unraveling the regulation of hepatic 
metabolism by insulin. Trends Endocrinol Metab. 2017;28(7):497–505.

42. Lam TK, van de Werve G, Giacca A. Free fatty acids increase basal hepatic 
glucose production and induce hepatic insulin resistance at different sites. 
Am J Physiol Endocrinol Metab. 2003;284(2):E281–290.

43. Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitiv-
ity and metabolism. Nat Rev Mol Cell Biol. 2018;19(10):654–72.

44. Yan G, Li F, Elia C, Zhao Y, Wang J, Chen Z, Yuan H, Lu Y. Association of lipid 
accumulation product trajectories with 5-year incidence of type 2 diabetes in 
Chinese adults: a cohort study. Nutr Metab. 2019;16:72.

45. Amouzegar A, Honarvar M, Masoumi S, Tohidi M, Mehran L, Azizi F. Sex-spe-
cific trajectories of insulin resistance markers and reduced renal function dur-
ing 18 years of follow-up: TLGS. J Clin Endocrinol Metab. 2023;108(6):e230–9.

46. Yan Y, Wang D, Sun Y, Ma Q, Wang K, Liao Y, Chen C, Jia H, Chu C, Zheng W, 
et al. Triglyceride-glucose index trajectory and arterial stiffness: results from 
Hanzhong adolescent hypertension cohort study. Cardiovasc Diabetol. 
2022;21(1):33.

47. Yu H, Tao L, Li YG, Yang L, Liu D, Wang Y, Hao X, He H, Che Y, Wang P, et al. 
Association between triglyceride-glucose index trajectories and carotid 
atherosclerosis progression. Cardiovasc Diabetol. 2023;22(1):130.

48. Huang Z, Ding X, Yue Q, Wang X, Chen Z, Cai Z, Li W, Cai Z, Chen G, Lan Y, 
et al. Triglyceride-glucose index trajectory and stroke incidence in patients 
with hypertension: a prospective cohort study. Cardiovasc Diabetol. 
2022;21(1):141.

49. Xin F, He S, Zhou Y, Jia X, Zhao Y, Zhao H. The triglyceride glucose index trajec-
tory is associated with hypertension: a retrospective longitudinal cohort 
study. Cardiovasc Diabetol. 2023;22(1):347.

50. Li H, Zuo Y, Qian F, Chen S, Tian X, Wang P, Li X, Guo X, Wu S, Wang A. 
Triglyceride-glucose index variability and incident cardiovascular disease: a 
prospective cohort study. Cardiovasc Diabetol. 2022;21(1):105.

51. Kim MK, Han K, Park YM, Kwon HS, Kang G, Yoon KH, Lee SH. Associations of 
variability in blood pressure, glucose and cholesterol concentrations, and 
body mass index with mortality and cardiovascular outcomes in the general 
population. Circulation. 2018;138(23):2627–37.

52. Iguchi T, Hasegawa T, Otsuka K, Matsumoto K, Yamazaki T, Nishimura S, 
Nakata S, Ehara S, Kataoka T, Shimada K, et al. Insulin resistance is associated 
with coronary plaque vulnerability: insight from optical coherence tomogra-
phy analysis. Eur Heart J Cardiovasc Imaging. 2014;15(3):284–91.

53. Ghouse J, Skov MW, Kanters JK, Lind B, Isaksen JL, Blanche P, Haunsø S, Køber 
L, Svendsen JH, Olesen MS, et al. Visit-to-visit variability of hemoglobin A(1c) 
in people without diabetes and risk of major adverse cardiovascular events 
and all-cause mortality. Diabetes Care. 2019;42(1):134–41.

54. Wan EYF, Yu EYT, Chin WY, Barrett JK, Mok AHY, Lau CST, Wang Y, Wong ICK, 
Chan EWY, Lam CLK. Greater variability in lipid measurements associated 
with cardiovascular disease and mortality: a 10-year diabetes cohort study. 
Diabetes Obes Metab. 2020;22(10):1777–88.

55. Nauli AM, Matin S. Why do men accumulate abdominal visceral fat? Front 
Physiol. 2019;10:1486.

56. Gasparini SJ, Swarbrick MM, Kim S, Thai LJ, Henneicke H, Cavanagh LL, 
Tu J, Weber MC, Zhou H, Seibel MJ. Androgens sensitise mice to gluco-
corticoid-induced insulin resistance and fat accumulation. Diabetologia. 
2019;62(8):1463–77.

57. Tchernof A, Després JP. Pathophysiology of human visceral obesity: an 
update. Physiol Rev. 2013;93(1):359–404.



Page 14 of 14Zhou et al. Cardiovascular Diabetology          (2025) 24:198 

58. Tebbens M, Schutte M, Troelstra MA, Bruinstroop E, de Mutsert R, Nederveen 
AJ, den Heijer M, Bisschop PH. Sex steroids regulate liver fat content and 
body fat distribution in both men and women: a study in transgender per-
sons. J Clin Endocrinol Metab. 2023;109(1):e280–90.

59. Lam YY, Mitchell AJ, Holmes AJ, Denyer GS, Gummesson A, Caterson ID, Hunt 
NH, Storlien LH. Role of the gut in visceral fat inflammation and metabolic 
disorders. Obes. 2011;19(11):2113–20.

60. Dong WT, Long LH, Deng Q, Liu D, Wang JL, Wang F, Chen JG. Mitochondrial 
fission drives neuronal metabolic burden to promote stress susceptibility in 
male mice. Nat Metab. 2023;5(12):2220–36.

61. Li C, Ni S, Zhao L, Lin H, Yang X, Zhang Q, Zhang L, Guo L, Jiang S, Tang N. 
Effects of PM(2.5) and high-fat diet on glucose and lipid metabolisms and 
role of MT-COX3 methylation in male rats. Environ Int. 2024;188:108780.

62. Cupido AJ, Asselbergs FW, Schmidt AF, Hovingh GK. Low-density lipoprotein 
cholesterol attributable cardiovascular disease risk is sex specific. J Am Heart 
Assoc. 2022;11(12):e024248.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Long-term dual-trajectories of TyG and LAP and their association with cardiometabolic multimorbidity in midlife: the CARDIA study
	Abstract
	Introduction
	Methods
	Study design and population
	Assessment of the TyG and LAP
	Other covariates
	Outcomes
	Statistical analysis

	Results
	Baseline characteristics of TyG and LAP quartiles and outcomes
	Baseline characteristics based on dual-trajectory groups
	Dual-trajectory and outcomes
	Multi-state analysis
	Sensitivity analysis
	Time-dependent Cox analysis
	Subgroup analysis

	Discussion
	Conclusion
	References


