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the urgent need for effective prevention and management 
strategies. Currently, managing T2D mainly depends on 
lifestyle changes and medications focused on controlling 
blood sugar levels; however, these interventions often fail 
to effectively reduce the risk of CHD [5–7]. This reveals a 
significant gap in understanding the underlying mecha-
nisms of disease and underscores the need for a deeper 
understanding of how T2D is linked to CHD. Research 
shows that T2D and CHD share environmental expo-
sure risk factors, such as lifestyle and obesity [8]. At the 
same time, they also share some genetic factors, such as 
PCSK9 and RAC1 [9]. The interaction of genetic, envi-
ronmental, and lifestyle factors makes this association 
complex, requiring a comprehensive approach to explore 
the underlying mechanisms and create effective predic-
tive tools.

Introduction
Type 2 diabetes (T2D) is a major global health issue char-
acterized by insulin resistance and a relative deficiency 
of insulin [1, 2]. This condition leads to hyperglycemia 
and various complications, such as cardiovascular dis-
ease. Among these complications, coronary heart dis-
ease (CHD) poses a critical risk for patients with T2D, 
significantly increasing mortality rate. People with T2D 
have a two–four fold increased risk of developing CHD 
compared to those without diabetes [3, 4]. This highlights 
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Abstract
Emerging evidence reveals a complex association between type 2 diabetes (T2D) and coronary heart disease (CHD), 
which share common risk factors and biological pathways. This study aims to identify the shared proteomic signatures 
of T2D and CHD, as well as whether the shared proteins predict incident CHD in T2D patients, and to develop predictive 
models. Utilizing data from 53,014 UK Biobank participants and 2923 plasma proteins, we identified 488 proteins 
associated with T2D, of which 125 proteins were also associated with CHD. Among the shared proteins, we determine 
nine proteins showing causal associations with CHD, including PCSK9, NRP1, and CD27. Mediation analyses suggest 
that the nine proteins mediate the association between T2D and CHD. By integrating these proteins into our predictive 
model, we achieved a desirable prediction (AUC = 0.819) for future CHD onset in T2D patients. Additionally, druggability 
evaluation show 32 potential therapeutic agents, including established antihypertensives and nine novel compounds, 
suggesting avenues for dual-targeted treatment strategies. Collectively, our findings unveil the proteomic signatures 
associated with both T2D and CHD, providing implications for screening and predicting future CHD onset in T2D 
patients.
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Proteins, which are the intricate molecular products 
resulting from the complex interactions between genes 
and the surrounding environment, have the potential 
to serve as more reliable indicators for predicting the 
onset of various diseases [10]. Plasma proteins, as a more 
accessible source of protein, have better disease relevance 
in clinical research and are a great choice for proteomic 
studies. Despite this promising capability, the specific 

protein molecules that are shared between T2D and 
CHD remain largely unknown at this time. Furthermore, 
it is still unclear whether the protein molecules that influ-
ence the development of T2D can also serve as predic-
tive markers for the occurrence of CHD [11]. Therefore, 
employing advanced proteomics techniques to develop 
a comprehensive predictive model for CHD specifically 
in patients suffering from diabetes will be crucial [12]. 
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In addition, the integration of machine learning (ML) 
algorithms and Mendelian randomization (MR) analy-
sis methods with traditional epidemiological statistical 
approaches to support proteomics technology not only 
broadens the spectrum of analytical techniques available 
but also significantly enhances the reliability and robust-
ness of the final predictive model [13, 14]. This approach 
will significantly enhance the prognostic management of 
diabetic patients and contribute to alleviating the burden 
of comorbidities associated with these conditions.

This study aims to identify the shared proteomic sig-
natures of T2D and CHD, as well as whether the shared 
proteins predict incident CHD in T2D patients, and to 
develop predictive models, considering the complexity 
of T2D and its link to CHD. First, we screened core pro-
teins related to T2D from a total of 2,923 plasma proteins 
using ML techniques and built an interaction network 
for these proteins. Subsequently, we employed the Cox 
proportional hazards model to preliminarily identify pro-
teins linked to CHD occurrence in T2D patients. Third, 
we performed causal association validation on proteins 
associated with CHD occurrence in the T2D population 
using protein quantitative trait loci (pQTL) MR analy-
sis. Fourth, we constructed a predictive model for future 
CHD incidence in T2D patients. This model utilized pro-
teins validated by the Cox proportional hazards model 
and pQTL MR analysis, and we assessed its effectiveness. 

Fifth, mediation analysis was used to explain how the 
aforementioned proteins influence the progression from 
T2D to CHD. Finally, we elucidated the potential proteins 
through protein–protein interaction analysis, enrich-
ment analysis, etc., and predicted drugs that could pre-
vent CHD occurrence in T2D patients.

Methods
Population and study design
The UK Biobank (UKB) (https://www.ukbiobank.ac.uk/) 
is a long-term study that has recruited over 500,000 par-
ticipants aged 40 to 69 [15]. The protein data in this study 
was obtained from the UKB database, which included 
53,014 participants and measured 2,923 plasma pro-
teins. The data for the Cox proportional hazards model 
was also sourced from the UKB, primarily comprising 
T2D and CHD data, as well as demographic and lifestyle 
information. For the pQTL MR and mediation analyses, 
the pQTL data was obtained from the Icelandic database, 
with 35,559 participants and 4,907 plasma proteins [16]. 
T2D and CHD data were obtained from the FinnGen 
consortium, which included 440,735 and 453,733 par-
ticipants, respectively [17]. This approach ensured popu-
lation uniformity and minimized bias from a single data 
source.

Figure 1 illustrates the overall design of the study. We 
conducted a comprehensive proteomics study to identify 

Fig. 1  The flow chart. First, screen core proteins related to T2D from a total of 2923 plasma proteins and build an interaction network for these proteins; 
second, identify proteins linked to CHD occurrence in T2D patients; third, perform causal association validation on proteins associated with CHD occur-
rence in the T2D population; fourth, construct a predictive model for future CHD incidence in T2D patients and verify the model's effectiveness; fifth, 
explain how the aforementioned proteins influence the progression from T2D to CHD; sixth, elucidate the potential proteins through protein–protein 
interaction analysis, enrichment analysis, etc., and predicted drugs that could prevent CHD occurrence in T2D patients. T2D Type 2 diabetes, CHD Coro-
nary heart disease
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proteins that predict future CHD in patients with T2D. 
Simultaneously, we developed predictive models using 
these proteins and further clarified their effects within 
the models.

Proteomic profiling
The expression of proteins was standardized and quanti-
fied by utilizing baseline blood samples on the advanced 
antibody-based Olink Explore 3072 platform, which is 
renowned for its precision and reliability in proteomic 
analysis. Detailed methodologies for sample processing, 
Olink proteomics detection, plasma analysis, and data 
processing can be found in previous studies that laid the 
groundwork for this research [18]. A total of 2,923 pro-
teins were detected using this platform. To maintain data 
integrity, we excluded any proteins that exhibited missing 
values exceeding 20% of the participants, ensuring that 
our findings would be both robust and reliable.

Diagnosis of T2D and CHD
The UKB database defines disease phenotypes using 
various data sources, including hospital records, primary 
care information, and death registrations, providing a 
strong framework for disease classification. In our study, 
we use the time of blood collection as the baseline, which 
is crucial for our analysis. The identification of cases of 
T2D at this baseline is conducted in accordance with 
the International Classification of Diseases, 10th Revi-
sion (ICD-10), including the codes E110 to E119, which 
pertain to Non-insulin-dependent diabetes mellitus. Fur-
thermore, the identification of new-onset CHD during 
the follow-up period is similarly grounded in the ICD-10 
classification system, encompassing a range of relevant 
codes including I20 (angina pectoris), I21 (acute myo-
cardial infarction), I22 (subsequent myocardial infarc-
tion), I23 (certain current complications following acute 
myocardial infarction), I24 (other acute ischaemic heart 
diseases), and I25 (chronic ischaemic heart disease). This 
approach offers a comprehensive overview of potential 
cardiovascular conditions.

Additional data
Demographic factors such as sex, age, ethnicity, qualifi-
cations, and body mass index (BMI), as well as lifestyle 
factors like smoking, alcohol consumption, sleep dura-
tion, daytime napping, and sleeplessness, were included 
as covariates in this study. Including this data effectively 
eliminates potential confounding biases and clearly 
demonstrates the impact of lifestyle on protein expres-
sion, thereby enhancing the reliability and validity of the 
results.

Statistical analyses
Identification of core proteins for T2D
First, the 2,923 plasma protein data from the UKB data-
base required data quality control. Proteins with over 
20% missing participant data were excluded to ensure 
data quality and reliability of the results. Second, the R 
programming language's mice package (version 3.14.0) 
was used to impute missing values in the protein data. 
Third, the Lasso regression model was used to screen 
for core proteins for T2D. Finally, the STRING database 
(https://string-db.org) was utilized to clarify the ​i​n​t​e​r​a​c​t​
i​o​n associations among the core proteins associated with 
T2D [19].

Cox proportional hazards model
The dplyr package (version 1.0.9) and purrr package (ver-
sion 0.3.4) were utilized to integrate various datasets, 
including protein, T2D, CHD, demographic, and life-
style data from the UKB database, based on the analysis 
requirements. After integrating the core proteins related 
to T2D with demographic and lifestyle data, we used the 
Cox proportional hazards model to analyze the associa-
tion between these proteins and the future incidence of 
CHD in individuals diagnosed with T2D. A P-value of 
less than 0.05 suggested a significant association between 
the corresponding protein and the future CHD events in 
the T2D population.

MR analysis
pQTL MR analysis was employed to further investi-
gate the causal association between proteins predicting 
future CHD in the T2D population and the onset of CHD 
itself. The Inverse Variance Weighted (IVW) method 
was employed as the primary method, and MR Egger, 
Weighted median, Simple mode, Weighted mode were 
employed as the supplementary methods. P value < 0.05 
indicated a genetic causal association between protein 
and CHD. The instrumental variables (IVs) for pQTL and 
CHD had to satisfy four screening criteria: (1) IVs were 
associated with exposure (P < 5e−8); (2) Linkage disequi-
librium (LD) was excluded (r2 < 0.001, kb = 10,000); (3) 
IVs had sufficient strength of association with exposure 
(F > 10); (4) Confounding factors for IVs were excluded 
using the OpenGWAS database ​(​​​h​t​t​p​s​:​/​/​g​w​a​s​.​m​r​c​i​e​u​.​a​c​.​
u​k​/​​​​​) [20].

Heterogeneity tests, leave-one-out sensitivity analysis, 
and MR-PRESSO were employed to validate the positive 
results of the MR analysis to further enhance the cred-
ibility of the results. To validate positive results, we began 
by conducting heterogeneity tests to assess whether the 
IVs were heterogeneous. A P-value greater than 0.05 
indicated no heterogeneity among the IVs, leading to 
the use of a fixed-effect model for MR analysis. Con-
versely, a P-value less than 0.05 suggested heterogeneity, 
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prompting the use of a random-effect model. Next, we 
conducted leave-one-out sensitivity analysis to exam-
ine the impact of individual IVs on the overall results of 
the MR analysis. Furthermore, because the MR Egger 
method includes the intercept term in regression analy-
sis, we compared it with the IVW method to test for 
horizontal pleiotropy among the IVs. P  >  0.05 indicated 
no horizontal pleiotropy among the IVs, and the IVW 
method was used as the result of the MR analysis; con-
versely, the MR Egger method was used as the result of 
the MR analysis. Finally, the MR-PRESSO method was 
applied to identify any outliers among the IVs included 
in the study. We strictly tested each IV for outliers, and 
if outliers were found, they needed to be excluded and 
reanalyzed until no outliers remained among all IVs [21].

Prediction model construction and evaluation
Proteins validated through Cox proportional hazards model 
and pQTL MR analysis model were utilized to develop a 
prediction model for future CHD occurrences in the T2D 
population. The nomogram, as a graphical method for 
comprehensive analysis of multiple variables to predict 
the occurrence of a specific event, was used to display the 
results of the prediction model. Calibration curves, which 
transform continuous data into discrete categories, were 
used to evaluate how closely the model’s predicted prob-
abilities matched the actual probabilities. Receiver Operat-
ing Characteristic (ROC) Curve, Area Under ROC Curve 
(AUC), and Concordance Index (C-Index) were used to 
evaluate the accuracy of the model's predictions. Decision 
curve analysis (DCA) Curve illustrate how net benefits 
change when patient interventions are based on model pre-
dictions as the threshold probability varies, thereby helping 
to evaluate the model's clinical value.

Mediation analysis
To further clarify how proteins influence the occurrence 
of CHD in the T2D population, mediation analysis was 
used to reveal this process. We performed MR analyses 
separately for T2D and CHD, T2D and proteins, and 
proteins and CHD. Following these, we conducted a 
two-step mediation MR analysis to assess how each pro-
tein mediates the occurrence of CHD in the T2D popu-
lation. The screening criteria for IVs included: P < 5e−8, 
r2 < 0.001, kb = 10,000, F > 10, and confounding factors 
were excluded [20, 21].

Protein–protein interaction and enrichment analysis
To explore the associations between proteins that pre-
dict CHD in individuals with T2D, the STRING database 
was utilized to clarify how these proteins interact. The 
Gene Ontology (GO) database classifies gene and pro-
tein functions into three categories: Biological Process, 
Cellular Component, and Molecular Function. These 

categories help in studying the functional characteristics 
of genes and proteins. The Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database is a well-established and 
publicly accessible resource for pathway research. Enrich-
ment analysis, supported by hypergeometric distribution, 
effectively clarifies the functions and pathways of various 
proteins. We employed the clusterProfiler (version 4.4.4) 
package to conduct this analysis on the proteins men-
tioned earlier.

Drug prediction
The DGIdb database (https://www.dgidb.org/) is a ​p​u​b​l​i​
c database designed for drug prediction [22]. To further 
enhance the clinical value of this study, the DGIdb data-
base was used to predict potential drugs. These drugs 
may impact the occurrence of CHD in individuals with 
T2D.

Results
Identification of core proteins for T2D
After a thorough screening, we identified six proteins 
from the 2,923 plasma proteins obtained from the UKB 
that had missing participant values exceeding 20%. These 
proteins are CTSS, PCOLCE, C3, CST1, NPM1, and 
GLIPR1. Subsequently, 2,917 proteins were included 
in the analyses, which involved 3,335 T2D patients and 
49,679 controls from a total of 53,014 participants. Fol-
lowing data imputation and selection with the Lasso 
regression model, we identified 488 core proteins associ-
ated with T2D (Figure S1A–B, Table S1). Furthermore, a 
protein–protein interaction analysis demonstrated 212 
interactions among the 488 core plasma proteins associ-
ated with T2D, using a high confidence threshold of 0.70 
(Figure S1C, Table S2).

Identification of proteins linked to CHD in the T2D patients
A dataset of 488 core proteins related to T2D was cre-
ated from 3,335 T2D patients through thorough data 
screening and integration. The dataset includes 1,084 
T2D patients who developed CHD after diagnosis as the 
experimental group, and 2,251 T2D patients who did 
not develop CHD as the control group. The dataset also 
included relevant demographic and lifestyle data for the 
participants. The Cox proportional hazards model results 
showed that 125 proteins were linked to the occurrence 
of CHD in the T2D population. Among these, 102 pro-
teins, such as PCSK9, had a positive correlation (Hazard 
Ratio [HR] = 1.2777, 95% CI 1.1558–1.4125), while 23 
proteins, such as NRP1, displayed a negative correlation 
(HR = 0.9004, 95% CI 0.8178–0.9914) (Fig. 2A, Table S3).

Causal effects between plasma proteins and CHD
The Genome-wide association study (GWAS) data for CHD 
was sourced from the FinnGen consortium (​h​t​t​p​​s​:​/​​/​w​w​

https://www.dgidb.org/
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w​​.​f​​i​n​n​​g​e​n​​.​f​i​/​​e​n​​/​a​c​c​e​s​s​_​r​e​s​u​l​t​s) under the accession num-
ber finngen_R11_I9_CHD, which included 51,098 CHD 
patients and 402,635 controls. After obtaining the GWAS 
data of proteins associated with the occurrence of CHD in 
the T2D population from the pQTL data in Iceland, pQTL 
MR analysis was conducted. The results indicated that 11 
proteins, including PCSK9, were successfully validated with 
suggestive evidence of a causal association with CHD.

The sensitivity analysis indicated that the proteins 
NEFL and NRP2 showed evidence of horizontal pleiot-
ropy, leading to their exclusion from the study. Addition-
ally, some protein results showed heterogeneity, leading 
to the use of a random effects model to present the final 
results. Ultimately, nine proteins were validated as hav-
ing suggestive evidence of a causal association with CHD, 
suggesting their potential to predict CHD incidence in 
the T2D population. Among these nine proteins, five, 
including PCSK9, exhibited a positive causal associa-
tion (Odd Ratio [OR] = 1.2228, 95% CI 1.1533–1.2965). 
In contrast, four proteins, including NRP1, demon-
strated a negative causal association (OR = 0.9326, 95% CI 
0.9016–0.9647). Additionally, PCSK9 has been previously 

reported in the literature, whereas the other eight pro-
teins were newly discovered in this study. The correction 
results showed that among these nine proteins, PCSK9 
(FDR = 7.6920E−10), NRP1 (FDR = 1.6444E−03), and 
CD27 (FDR = 2.1725E−02) provided statistically signifi-
cant evidence of a causal association (Fig. 2B, Figure S2, 
Table S4). The correspondence between positive results 
from the Cox proportional hazards model and the pQTL 
MR analysis model is shown in Fig. 2C–E.

Prediction model construction and evaluation
To evaluate the clinical value of the identified proteins in 
predicting CHD incidence among individuals with T2D, 
we first created a basic model (Model 1) using demo-
graphic and lifestyle data from this population. The ROC 
curve indicated that model 1 had an AUC of 0.729 (95% 
CI 0.710–0.748) and a C-index of 0.727 (95% CI 0.708–
0.746), reflecting moderate predictive accuracy (Figure 
S3A–B). Subsequently, nine proteins with predictive 
potential were used to construct Model 2. For Model 2, 
the ROC curve revealed an AUC of 0.733 (95% CI 0.715–
0.751) and a C-index of 0.733 (95% CI 0.715–0.751), both 

Fig. 2  Identification and validation of proteins linked to CHD in the T2D patients. A Volcano plot of Cox proportional hazards model results. B Volcano plot 
of MR analysis results. C–E The correspondence between positive results from the Cox proportional hazards model and the MR analysis. MR Mendelian 
randomization
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reflecting moderate predictive accuracy and an improve-
ment over Model 1 (Figure S4A–B). PCSK9 was validated 
by both the Cox proportional hazards model and the 
pQTL MR analysis model, providing stronger statistical 
evidence after FDR correction. Consequently, we inte-
grated PCSK9 into Model 1, thereby developing Model 
3. The ROC curve analysis indicated that Model 3 had 
an AUC of 0.734 (95% CI 0.715–0.753) and a C-index of 
0.733 (95% CI 0.716–0.752) (Figure S5A–B). Its predic-
tive accuracy was comparable to that of Model 2. These 
findings highlight the potential of the identified proteins, 
especially PCSK9, for predicting CHD in individuals with 
T2D. Finally, we developed Model 4 by merging the nine 
previously identified proteins with Model 1. The ROC 

curve indicated that Model 4 had an AUC of 0.819 (95% 
CI 0.804–0.833) and a C-index of 0.818 (95% CI 0.803–
0.833). This indicates a notable enhancement in predic-
tive accuracy over the earlier three models (Fig.  3A–B, 
Table 1).

To better evaluate the effects of the four models we 
constructed, both individually and in relation to each 
other, we also used calibration curves and DCA curves 
in addition to the ROC curve and C-index. The results 
from the calibration and DCA curves demonstrated that 
our four models effectively predicted probabilities and 
offered net benefits. Among the four models, the calibra-
tion curve showed that model 4 was closer to the true 
predictive probability (Figure S3C, S4C, S5C, Fig.  3C). 

Fig. 3  Prediction model construction and evaluation. A Nomogram curves of Model 4. B ROC curve of Model 1 to Model 4. C Calibration curves of Model 
4. D DCA curve of Model 1 to Model 4. Model 1: Base model; Model 2: nine proteins; Model 3: Base model + PCSK9; Model 4: Base model + nine proteins; 
ROC Receiver operating characteristic; DCA Decision curve analysis
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Additionally, the DCA curve indicated that model 4 pro-
vided significantly better net benefits, suggesting a higher 
clinical application value (Fig. 3D).

The mediation effect of T2D on CHD via proteins
The GWAS data for T2D were obtained from the Finn-
Gen consortium (​h​t​t​p​​s​:​/​​/​w​w​w​​.​f​​i​n​n​​g​e​n​​.​f​i​/​​e​n​​/​a​c​c​e​s​s​_​r​e​s​
u​l​t​s) under accession number finngen_R11_T2D, which 
included 71,728 T2D patients and 369,007 control indi-
viduals. The mediation analysis revealed that the men-
tioned proteins regulated the influence of T2D on CHD. 
The results indicated a causal association between T2D 
and CHD, with a total effect β value of 0.1525. Among 
the nine proteins, PCSK9 played a significant mediating 
effect. Its expression level increased in the T2D popula-
tion, leading to a higher incidence of CHD, with a media-
tion proportion of 5.330%. Additionally, NRP1 and CD27 
also demonstrated statistically significant causal associa-
tions after FDR correction, with mediation proportions 
of 1.546% and 1.010%, respectively (Table 2, Figure S6).

Construction of protein module networks and results of 
protein enrichment analysis
The protein–protein interaction analysis identified 10 
primary and 20 secondary associated proteins related to 
the nine proteins predictive of CHD in the T2D popula-
tion, creating a network of 168 interactions (threshold: 
high confidence (0.70)) (Fig.  4A, Table S5). The enrich-
ment analysis results indicated that these nine predic-
tive proteins were involved in 302 biological processes, 8 
cellular components, and 36 molecular functions. Addi-
tionally, they were primarily enriched in two pathways. 
Specifically, these nine proteins were primarily located 
in the pseudopod, endolysosomal, and apical plasma 
membranes of cells related to circulation and metabo-
lism. They were involved in biological processes such as 
coronary vascular morphogenesis, lipid homeostasis, and 
systemic hormone regulation, with functions including 
insulin-like growth factor receptor binding, apolipopro-
tein binding, and ion channel regulatory activity. More-
over, these nine proteins were involved in cholesterol 
metabolism and the renin-angiotensin system (Fig.  4B, 
Table S6).

Drug prediction
Using the DGIdb database, we successfully predicted and 
identified corresponding drugs for five of the nine previ-
ously obtained proteins, yielding a total of 32 potential 
drugs. A total of 23 drugs have been reported in relation 
to conditions such as CHD, myocarditis, and hyperten-
sion. Among these, the REN-related drug aliskiren has 
been approved as an antihypertensive agent (Interaction 
score = 5.2508), and the PCSK9-related drug alirocumab 
has been approved as a cholesterol-lowering agent (Inter-
action score = 4.0391). Additionally, we identified nine 
previously unreported drugs, marking new discoveries. 
Among these, cytidine-3′-monophosphate had the high-
est predicted score of 105.0153, indicating its potential 
for treating comorbid T2D and CHD, as well as for pre-
venting CHD while managing T2D (Fig. 4C, Table S7).

Table 1  Predictive performance of traditional risk factors and 
identified plasma proteins for predicting future CHD events in 
T2D patients
Predictive feature AUC (95% CI) Concordance 

index (95% CI)
Base model 0.729 (0.710–0.748) 0.727 

(0.708–0.746)
nine proteins 0.733 (0.715–0.751) 0.733 

(0.715–0.751)
Base model + PCSK9 0.734 (0.715–0.753) 0.733 

(0.716–0.752)
Base model + ninie proteins 0.819 (0.804–0.833) 0.818 

(0.803–0.833)
The base model included sex, age, ethnicity, qualifications, body mass index 
(BMI), smoking status, alcohol frequency, sleep duration, nap during day, 
sleeplessness

Nine proteins included PCSK9, NRP1, CD27, REN, RNASE1, ANGPTL4, PALM, 
RNASE6 and CYTL1

T2D Type 2 diabetes, CHD Coronary heart disease

Table 2  The mediation effect of T2D on CHD via proteins
T2D-proteins-CHD Total effect Direct effect 1 Direct effect 2 Direct effect Mediation effect Mediated proportion (%) (95%CI)

β β β β β (95%CI)
PCSK9 0.1525 0.0404 0.2011 0.1443 0.0081(0.0021, 0.0142) 5.330(1.368, 9.292)
NRP1 0.1525 − 0.0338 − 0.0698 0.1501 0.0024(0.0010, 0.0037) 1.546(0.684, 2.408)
CD27 0.1525 0.0455 0.0338 0.1509 0.0015(0.0008, 0.0023) 1.010(0.504, 1.515)
REN 0.1525 − 0.0350 0.1915 0.1592 − 0.0067(− 0.0197, 0.0063) − 4.394(− 12.930, 0.000)
RNASE1 0.1525 0.0577 0.0383 0.1503 0.0022(0.0012, 0.0032) 1.449(0.800, 2.097)
ANGPTL4 0.1525 0.0358 0.0650 0.1501 0.0023(0.0003, 0.0044) 1.526(0.185, 2.866)
PALM 0.1525 − 0.0693 − 0.0471 0.1492 0.0033(0.0018, 0.0047) 2.138(1.194, 3.082)
RNASE6 0.1525 − 0.0367 − 0.0135 0.1520 0.0005(1.9254E−05, 0.0010) 0.324(0.013, 0.635)
CYTL1 0.1525 0.0429 − 0.0264 0.1536 − 0.0011(− 0.0018, − 0.0005) − 0.741(− 1.164, − 0.319)
T2D Type 2 diabetes, CHD Coronary heart disease

https://www.finngen.fi/en/access_results
https://www.finngen.fi/en/access_results
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Discussion
In this large-scale proteomic analysis, we first identi-
fied 488 core proteins related to T2D and their interac-
tions, of which 125 proteins were associated with the 
occurrence of CHD in the T2D population. Among the 
shared proteins, nine proteins were causally associ-
ated with CHD. Our study identifies significant associa-
tions between the established protein PCSK9 and newly 
discovered proteins, such as NRP1, in relation to CHD 
risk. This highlights the potential of these biomarkers 
to improve clinical risk assessment and inform targeted 
treatment strategies. Mediation and enrichment analy-
ses clarify how these proteins are involved in the link 
between T2D and CHD. Our drug screening identified 

32 drugs that may prevent CHD in the T2D population, 
including nine that are newly discovered. In this discus-
sion, we will examine the significance of our findings and 
the biological effects of the identified proteins. We will 
also explore how these proteins may contribute to the 
mechanisms linking T2D and CHD. Additionally, we will 
assess the potential value of predictive drugs for future 
personalized treatments in the T2D population.

Utilizing ML methods to identify core proteins linked 
to T2D marks a major step in comprehending the dis-
ease's complex interactions. Our study identified 488 
core proteins associated with T2D. It also revealed 212 
interactions among these proteins, which enhances the 
potential for early biomarkers in clinical settings.The 

Fig. 4  Mechanism analysis. A Protein module networks. B Enrichment analysis of proteins. C Protein-drug interaction networks
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functions of these core proteins, especially their effects in 
metabolic pathways and vascular health, warrant further 
investigation. Research has shown that elevated levels of 
inflammatory markers such as C-reactive protein (CRP) 
are associated with an increased risk of T2D, under-
scoring the importance of inflammation in this context 
[23]. Furthermore, the connections between metabolic 
syndrome, insulin resistance, and cardiovascular health 
are well-documented, indicating that targeting these 
pathways may benefit patients [24–26]. Understanding 
protein interactions better may clarify the mechanisms 
behind T2D. This insight could lead to targeted therapies 
that address the disease's root causes. The identification 
of these biomarkers has significant clinical implications; 
it could transform management practices and facilitate 
personalized interventions tailored to individual risk pro-
files, ultimately improving patient outcomes and quality 
of life.

This study applied Cox proportional hazards models 
and MR analysis, providing strong evidence that specific 
proteins, including PCSK9, NRP1, and CD27, are linked 
to the risk of CHD in patients with T2D. The Cox pro-
portional hazards model identified 125 proteins associ-
ated with CHD among 488 core proteins linked to T2D. 
The MR analysis performed a follow-up validation of the 
125 identified proteins, ultimately revealing nine pro-
teins that may have causal links to CHD, especially the 
well-known protein PCSK9, which enhances the reliabil-
ity of our results [27]. Identifying PCSK9 as a core pro-
tein linked to CHD risk supports previous literature on 
its effect in lipid metabolism and cardiovascular disease, 
making PCSK9 inhibitors a promising therapeutic strat-
egy that may reduce CHD risk in T2D patients [28–30]. 
Additionally, discovering NRP1 and other proteins like 
CD27 and REN provides new insights into the patho-
physiology of CHD in T2D patients. NRP1 is involved 
in several biological processes, such as angiogenesis and 
neuroprotection, which may influence cardiovascular 
health [31, 32]. These proteins may be crucial targets for 
innovative therapies that focus on lowering CHD risk 
in individuals with diabetes. The integration of genetic 
data reinforces the value of these biomarkers in clini-
cal practice, enabling personalized medicine approaches 
that could greatly improve the management of T2D and 
related cardiovascular risks.

Creating a predictive model with an AUC of 0.819 for 
CHD in patients with T2D represents a significant step 
forward in cardiovascular risk assessment. This model 
uses specific protein biomarkers, showing their abil-
ity to improve early detection and intervention strate-
gies for CHD in this high-risk group. The robustness of 
the model is further supported by calibration curves, 
C-index, and DCA, all of which affirm its clinical appli-
cability and authenticity. Additionally, the model's 

predictive accuracy could be greatly enhanced by includ-
ing more biomarkers and clinical data, leading to a more 
comprehensive approach to risk stratification. Future 
research should focus on validating this predictive model 
in various populations to confirm its general applicability. 
Furthermore, incorporating more clinical variables, like 
lifestyle factors and genetic predispositions, may improve 
the model's accuracy and usefulness. This model has sig-
nificant implications, as it can guide clinical decisions, 
allowing healthcare providers to start earlier interven-
tions for T2D patients at high risk for CHD. This pro-
active strategy may improve patient management and 
reduce the burden of comorbidities linked to T2D and 
CHD on healthcare systems. In light of these findings, it 
is critical to prioritize further research on the complex 
interactions between biomarkers, clinical variables, and 
patient outcomes in T2D and CHD.

We investigated how proteins like PCSK9, NRP1, 
and CD27 interact in T2D and CHD, highlighting their 
crucial effects in disease processes. The enrichment 
analysis shows that these proteins are involved in lipid 
metabolism and vascular regulation, which supports 
the proposed ways they may affect disease outcomes. 
Recent studies have clarified the effect of PCSK9 in lipid 
metabolism, showing how it affects low-density lipopro-
tein (LDL) levels, a core factor in atherosclerosis and 
related cardiovascular events [33, 34]. The protein NRP1 
is involved in vascular homeostasis and angiogenesis 
[32, 35]. These pathways are often disrupted in diabetic 
patients, increasing their risk of cardiovascular complica-
tions. Moreover, CD27, a member of the tumor necrosis 
factor receptor superfamily, has been linked to immune 
system modulation, which may contribute to the chronic 
inflammation observed in T2D and its association with 
cardiovascular diseases [36, 37]. The convergence of these 
pathways and the identification of novel therapeutic tar-
gets carry substantial significance for future research. As 
research progresses, the identification of novel therapeu-
tic targets will be crucial in developing effective interven-
tions that can improve patient outcomes across various 
medical disciplines. This multifaceted approach may pave 
the way for the development of innovative pharmaco-
logical treatments that not only lower blood glucose lev-
els but also modulate the activities of PCSK9 and other 
related proteins, thereby improving lipid profiles and 
enhancing vascular function. Gaining a deeper under-
standing of the biological factors that underpin these 
associations will enable us to devise targeted interven-
tions that address both glucose control and cardiovas-
cular risk factors, ultimately leading to improved patient 
management and better health outcomes.

By utilizing the DGIdb database, we identified poten-
tial drug candidates that could lead to innovative thera-
peutic interventions for T2D and CHD. We discovered 
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32 potential drugs, such as established antihypertensive 
and cholesterol-lowering agents like alirocumab and 
aliskiren, along with nine previously unreported drugs 
like cytidine-3′-monophosphate, which underscores the 
versatility of our findings [30, 38, 39]. Research indicates 
that PCSK9 inhibitors, like alirocumab and evolocumab, 
significantly reduce low-density lipoprotein cholesterol 
(LDL-C) and cardiovascular risk in people with diabe-
tes [40]. Consequently, these findings support the idea 
that targeting PCSK9 may offer dual benefits: improving 
glycemic control and reducing cardiovascular morbid-
ity. This dual action is particularly important because 
many individuals suffer from both T2D and CHD, which 
complicates treatment plans and makes optimal man-
agement difficult [41, 42]. The intricate association 
between nucleotide metabolism, particularly focusing 
on cytidine-3′-monophosphate, glucose metabolism, and 
cardiovascular health necessitates further exploration. 
As indicated in prior research, nucleotide metabolism 
is not only pivotal for cellular signaling but also plays a 
significant role in energy homeostasis, which is crucial 
in the context of metabolic disorders such as T2D and 
CHD [43]. Previous studies have found that inhibitors 
of cytidine-3′-monophosphate can bind to the active site 
of ribonuclease, thereby altering the structure and some 
characteristics and functions of the enzyme. This will 
evidently affect energy metabolism, gene expression, and 
protein modification, and the diseases related to this are 
likely its potential indications, further confirming the 
possibility of cytidine-3′-monophosphate as a potential 
drug [44]. Emerging evidence suggests that alterations in 
nucleotide levels, including cytidine-3′-monophosphate, 
may influence the regulation of key metabolic pathways 
involved in glucose homeostasis. For instance, studies 
have demonstrated that nucleotide metabolism can affect 
insulin signaling pathways, thereby impacting glucose 
uptake and utilization in peripheral tissues. This dysregu-
lation is often observed in T2D, where insulin resistance 
is a hallmark feature [45]. These factors are essential in 
the pathophysiology of both T2D and CHD [46]. Apply-
ing these findings in clinical practice could result in more 
tailored treatment approaches. It is regrettable that there 
is still relatively little research on cytidine 3'-monophos-
phate, and this drug has not yet been approved by the 
FDA. Future studies must assess the efficacy and safety 
of these candidate drugs in clinical settings. This will help 
ensure that our findings lead to practical applications 
that improve the health of patients with T2D who are 
at risk for CHD. In summary, the biochemical pathways 
governed by cytidine-3′-monophosphate and its interac-
tion with glucose metabolism represent a promising area 
of research.

This study combines a comprehensive approach to pro-
teomics research with advanced ML techniques, detailed 

MR analysis, and traditional epidemiological statisti-
cal methods to create a strong framework for investiga-
tion. Additionally, it uses various datasets from multiple 
sources along with individual data, enhancing the analy-
sis's depth and breadth. Finally, the study employs strict 
inclusion and exclusion criteria and clearly defined cut-
off values, ensuring that the findings are both reliable and 
relevant. This study has several limitations to consider. 
Firstly, although the sample size was relatively large, it 
may not fully represent the entire population of individu-
als with T2D. This limitation could affect the generaliz-
ability of our results. Additionally, differences between 
datasets may lead to batch effects, which complicate 
data integration and impact the robustness of our con-
clusions. Thirdly, the plasma proteins used for analysis 
may also have certain limitations, such as: the protein 
content exists within a dynamic range, which is influ-
enced by factors like age and gender, and the impact of 
extreme dynamic ranges on results cannot be completely 
ruled out; during protein detection, the high-abundance 
proteins that dominate plasma may affect the detection 
of low-abundance proteins; the impact of protein modi-
fication events on protein abundance; and the effects 
of pre-analytical variability such as sample collection, 
processing time, storage conditions, and whether the 
samples have been contaminated on protein detection. 
Finally, without independent clinical validation assess-
ments, we cannot clearly establish the clinical utility of 
the predictive model created in this study. In the future, if 
conditions allow, it may be possible to create a dataset by 
collecting clinical data to further validate the predictive 
model.

In conclusion, this research identifies multiple proteins 
associated with T2D and constructs an effective model to 
predict CHD occurrence in T2D patients. These findings 
offer valuable insights for early identification and inter-
vention strategies in clinical practice, which may lead to 
better health outcomes for patients. Additionally, this 
study further investigates the effects and mechanisms of 
the identified proteins in relation to T2D and CHD, and 
proposes potential drug candidates for managing these 
comorbidities. Future research should concentrate on 
validating these proteins in clinical settings and explor-
ing their effects in personalized treatment approaches. 
Ultimately, this may enhance the management of T2D 
and its related cardiovascular issues by enabling disease 
prevention before onset, facilitating early intervention for 
serious illnesses, and supporting the co-management of 
multiple diseases.
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